Generalized Multitasking for Evolutionary Optimization of Expensive Problems

人类多任务处理 计算机科学 数学优化 最优化问题 趋同(经济学) 进化算法 连续优化 多目标优化 进化计算 人工智能 机器学习 数学 多群优化 心理学 经济增长 经济 认知心理学
作者
Jinliang Ding,Cuie Yang,Yaochu Jin,Tianyou Chai
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 44-58 被引量:154
标识
DOI:10.1109/tevc.2017.2785351
摘要

Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial EA (MFEA), leading to a faster convergence of the expensive problem. However, existing MFEAs do not work well in solving multitasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing MFEA is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized MFEA (G-MFEA), empirical studies have been conducted on eight multitasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed G-MFEA works more efficiently for multitasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LT发布了新的文献求助10
2秒前
好好学习发布了新的文献求助10
2秒前
4秒前
fft完成签到,获得积分20
4秒前
JamesPei应助annie采纳,获得10
5秒前
5秒前
6秒前
zik应助yuan采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
李萌发布了新的文献求助10
8秒前
大龙哥886应助xzx采纳,获得10
9秒前
万能图书馆应助yangmiemie采纳,获得10
10秒前
科研通AI6应助稳重的又菱采纳,获得10
11秒前
LucyLi发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
lin完成签到,获得积分10
14秒前
yangmiemie完成签到,获得积分10
16秒前
桐桐应助麦辣基米堡采纳,获得10
17秒前
杨海菡发布了新的文献求助10
18秒前
18秒前
科研通AI6应助阔达雨灵采纳,获得10
19秒前
lt关闭了lt文献求助
19秒前
20秒前
bkagyin应助lin采纳,获得10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
杨海菡完成签到,获得积分10
22秒前
wlf完成签到,获得积分10
24秒前
yangmiemie发布了新的文献求助10
25秒前
Breez2004发布了新的文献求助10
25秒前
yuan完成签到,获得积分10
25秒前
你好完成签到 ,获得积分10
26秒前
汉堡包应助xiangshuoqi采纳,获得10
26秒前
科目三应助张zhang采纳,获得10
29秒前
31秒前
32秒前
32秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5583159
求助须知:如何正确求助?哪些是违规求助? 4667130
关于积分的说明 14765305
捐赠科研通 4609254
什么是DOI,文献DOI怎么找? 2529077
邀请新用户注册赠送积分活动 1498340
关于科研通互助平台的介绍 1466992