Generalized Multitasking for Evolutionary Optimization of Expensive Problems

人类多任务处理 计算机科学 数学优化 最优化问题 趋同(经济学) 进化算法 连续优化 多目标优化 进化计算 人工智能 机器学习 数学 多群优化 心理学 经济增长 经济 认知心理学
作者
Jinliang Ding,Cuie Yang,Yaochu Jin,Tianyou Chai
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 44-58 被引量:154
标识
DOI:10.1109/tevc.2017.2785351
摘要

Conventional evolutionary algorithms (EAs) are not well suited for solving expensive optimization problems due to the fact that they often require a large number of fitness evaluations to obtain acceptable solutions. To alleviate the difficulty, this paper presents a multitasking evolutionary optimization framework for solving computationally expensive problems. In the framework, knowledge is transferred from a number of computationally cheap optimization problems to help the solution of the expensive problem on the basis of the recently proposed multifactorial EA (MFEA), leading to a faster convergence of the expensive problem. However, existing MFEAs do not work well in solving multitasking problems whose optimums do not lie in the same location or when the dimensions of the decision space are not the same. To address the above issues, the existing MFEA is generalized by proposing two strategies, one for decision variable translation and the other for decision variable shuffling, to facilitate knowledge transfer between optimization problems having different locations of the optimums and different numbers of decision variables. To assess the effectiveness of the generalized MFEA (G-MFEA), empirical studies have been conducted on eight multitasking instances and eight test problems for expensive optimization. The experimental results demonstrate that the proposed G-MFEA works more efficiently for multitasking optimization and successfully accelerates the convergence of expensive optimization problems compared to single-task optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助凯伢采纳,获得10
刚刚
上官若男应助白羽佳采纳,获得10
1秒前
1秒前
笑点低的发箍完成签到 ,获得积分10
3秒前
MchemG应助轻松盼烟采纳,获得10
3秒前
HMO_eee完成签到,获得积分10
4秒前
zz完成签到,获得积分10
4秒前
5秒前
苏大脸发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
常诺发布了新的文献求助50
8秒前
CodeCraft应助shinn采纳,获得10
9秒前
10秒前
fd163c应助艺术家脾气采纳,获得10
10秒前
11秒前
11秒前
多情dingding完成签到,获得积分10
12秒前
12秒前
Han发布了新的文献求助10
12秒前
羔羊发布了新的文献求助10
15秒前
无事小神仙完成签到 ,获得积分10
15秒前
FashionBoy应助甜美的一笑采纳,获得10
16秒前
16秒前
橙子发布了新的文献求助10
17秒前
可爱的函函应助HHH采纳,获得10
19秒前
寒天发布了新的文献求助10
20秒前
知之发布了新的文献求助10
20秒前
21秒前
儒雅致远发布了新的文献求助10
21秒前
23秒前
共享精神应助小枣采纳,获得10
23秒前
fd163c应助leo采纳,获得10
23秒前
yanan完成签到,获得积分10
23秒前
薛人英发布了新的文献求助10
24秒前
笑笑最可爱完成签到,获得积分10
24秒前
26秒前
zhabgyyy发布了新的文献求助10
26秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193