清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Light-Emitting Diodes Based on Colloidal Silicon Quantum Dots with Octyl and Phenylpropyl Ligands

发光二极管 材料科学 量子点 二极管 光电子学 量子效率
作者
Xiangkai Liu,Shuangyi Zhao,Wei Gu,Yuting Zhang,Xvsheng Qiao,Zhenyi Ni,Xiaodong Pi,Deren Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:10 (6): 5959-5966 被引量:84
标识
DOI:10.1021/acsami.7b16980
摘要

Colloidal silicon quantum dots (Si QDs) hold ever-growing promise for the development of novel optoelectronic devices such as light-emitting diodes (LEDs). Although it has been proposed that ligands at the surface of colloidal Si QDs may significantly impact the performance of LEDs based on colloidal Si QDs, little systematic work has been carried out to compare the performance of LEDs that are fabricated using colloidal Si QDs with different ligands. Here, colloidal Si QDs with rather short octyl ligands (Octyl-Si QDs) and phenylpropyl ligands (PhPr-Si QDs) are employed for the fabrication of LEDs. It is found that the optical power density of PhPr-Si QD LEDs is larger than that of Octyl-Si QD LEDs. This is due to the fact that the surface of PhPr-Si QDs is more oxidized and less defective than that of Octyl-Si QDs. Moreover, the benzene rings of phenylpropyl ligands significantly enhance the electron transport of QD LEDs. It is interesting that the external quantum efficiency (EQE) of PhPr-Si QD LEDs is lower than that of Octyl-Si QD LEDs because the benzene rings of phenylpropyl ligands suppress the hole transport of QD LEDs. The unbalance between the electron and hole injection in PhPr-Si QD LEDs is more serious than that in Octyl-Si QD LEDs. The currently obtained highest optical power density of ∼0.64 mW/cm2 from PhPr-Si QD LEDs and highest EQE of ∼6.2% from Octyl-Si QD LEDs should encourage efforts to further advance the development of high-performance optoelectronic devices based on colloidal Si QDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
18秒前
blm发布了新的文献求助10
24秒前
25秒前
33秒前
英姑应助blm采纳,获得10
33秒前
华仔应助百里幻竹采纳,获得10
38秒前
Bella完成签到 ,获得积分10
54秒前
57秒前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
古炮完成签到 ,获得积分10
1分钟前
蚂蚁踢大象完成签到 ,获得积分10
1分钟前
Hello应助百里幻竹采纳,获得10
1分钟前
萝卜仔完成签到 ,获得积分10
1分钟前
藤椒辣鱼应助jyy采纳,获得20
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
百里幻竹发布了新的文献求助10
2分钟前
3分钟前
打打应助百里幻竹采纳,获得10
3分钟前
3分钟前
百里幻竹发布了新的文献求助10
3分钟前
暴躁的老哥完成签到,获得积分10
3分钟前
慕青应助百里幻竹采纳,获得10
3分钟前
3分钟前
金钰贝儿完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
百里幻竹发布了新的文献求助10
5分钟前
Benhnhk21完成签到,获得积分10
5分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
Orange应助百里幻竹采纳,获得10
5分钟前
wxyinhefeng完成签到 ,获得积分10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505243
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694887