PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method

地震学 人工神经网络 到达时间 计算机科学 地质学 人工智能 工程类 运输工程
作者
Weiqiang Zhu,Gregory C. Beroza
出处
期刊:Geophysical Journal International [Oxford University Press]
被引量:731
标识
DOI:10.1093/gji/ggy423
摘要

As the number of seismic sensors grows, it is becoming increasingly difficult for analysts to pick seismic phases manually and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of improvements in automatic phase picking, it is difficult to match the performance of experienced analysts. A more subtle issue is that different seismic analysts may pick phases differently, which can introduce bias into earthquake locations. We present a deep-neural-network-based arrival-time picking method called "PhaseNet" that picks the arrival times of both P and S waves. Deep neural networks have recently made rapid progress in feature learning, and with sufficient training, have achieved super-human performance in many applications. PhaseNet uses three-component seismic waveforms as input and generates probability distributions of P arrivals, S arrivals and noise as output. We engineer PhaseNet such that peaks in the probability distributions provide accurate arrival times for both P and S waves. PhaseNet is trained on the prodigious available data set provided by analyst-labelled P and S arrival times from the Northern California Earthquake Data Center. The data set we use contains more than 700 000 waveform samples extracted from over 30 yr of earthquake recordings. We demonstrate that PhaseNet achieves much higher picking accuracy and recall rate than existing methods when applied to the waveforms of known earthquakes, which has the potential to increase the number of S-wave observations dramatically over what is currently available. This will enable both improved locations and improved shear wave velocity models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Andrew完成签到,获得积分10
1秒前
1秒前
2秒前
无花果应助陈倩采纳,获得10
4秒前
西安浴日光能赵炜完成签到,获得积分10
5秒前
Liuhui完成签到 ,获得积分10
5秒前
6秒前
临天下完成签到,获得积分10
6秒前
aser发布了新的文献求助10
6秒前
7秒前
8秒前
痴情的博超应助cc采纳,获得10
9秒前
10秒前
宣孤菱发布了新的文献求助10
11秒前
隐形荟发布了新的文献求助10
13秒前
aser完成签到,获得积分10
14秒前
15秒前
单纯的逊完成签到,获得积分10
18秒前
wk_sea发布了新的文献求助10
18秒前
Luyao完成签到,获得积分10
19秒前
21秒前
Yamila完成签到,获得积分10
22秒前
23秒前
小刀发布了新的文献求助10
25秒前
TGU2331161488完成签到,获得积分10
26秒前
俭朴的素阴完成签到,获得积分10
27秒前
27秒前
语物完成签到,获得积分10
28秒前
28秒前
负责凛完成签到,获得积分10
30秒前
lulul完成签到,获得积分20
32秒前
32秒前
fisker发布了新的文献求助10
33秒前
33秒前
一五一十关注了科研通微信公众号
35秒前
机灵柚子应助科研通管家采纳,获得10
36秒前
今后应助科研通管家采纳,获得10
36秒前
iNk应助科研通管家采纳,获得20
36秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
传奇3应助科研通管家采纳,获得10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792