重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Dose‐dependent modulation of the visually evoked N1/N170 by perceptual surprise: a clear demonstration of prediction‐error signalling

惊喜 感知 刺激(心理学) 脑电图 心理学 预测编码 认知心理学 视觉感受 计算机科学 事件相关电位 语音识别 神经科学 沟通 编码(社会科学) 数学 统计
作者
Jonathan Robinson,Michael Breakspear,Andrew W. Young,Patrick Johnston
出处
期刊:European Journal of Neuroscience [Wiley]
卷期号:52 (11): 4442-4452 被引量:39
标识
DOI:10.1111/ejn.13920
摘要

Abstract Prediction‐error checking processes play a key role in predictive coding models of perception. However, neural indices of such processes have yet to be unambiguously demonstrated. To date, experimental paradigms aiming to study such phenomena have relied upon the relative frequency of stimulus repeats and/or ‘unexpected’ events that are physically different from ‘expected’ events. These features of experimental design leave open alternative explanations for the observed effects. A definitive demonstration requires that presumed prediction error‐related responses should show contextual dependency (rather than simply effects of frequency or repetition) and should not be attributable to low‐level stimulus differences. Most importantly, prediction‐error signals should show dose dependency with respect to the degree to which expectations are violated. Here, we exploit a novel experimental paradigm specifically designed to address these issues, using it to interrogate early latency event‐related potentials ( ERP s) to contextually expected and unexpected visual stimuli. In two electroencephalography ( EEG ) experiments, we demonstrate that an N1/N170 evoked potential is robustly modulated by unexpected perceptual events (‘perceptual surprise’) and shows dose‐dependent sensitivity with respect to both the influence of prior information and the extent to which expectations are violated. This advances our understanding of perceptual predictions in the visual domain by clearly identifying these evoked potentials as an index of visual surprise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵寒迟发布了新的文献求助10
刚刚
zwy完成签到,获得积分10
1秒前
吱唔朱发布了新的文献求助10
2秒前
Ayers发布了新的文献求助10
2秒前
3秒前
孤独梦安完成签到 ,获得积分10
3秒前
4秒前
汉堡包应助大胆绮兰采纳,获得10
4秒前
浮游应助FLZLC采纳,获得10
4秒前
科目三应助单纯的不乐采纳,获得10
4秒前
4秒前
廖先生完成签到 ,获得积分10
4秒前
Hesper完成签到 ,获得积分10
5秒前
精明松思发布了新的文献求助10
5秒前
香蕉觅云应助zk采纳,获得10
6秒前
6秒前
123td完成签到,获得积分10
6秒前
7秒前
8秒前
顺利珂发布了新的文献求助10
8秒前
科研通AI6应助汉堡肉采纳,获得10
8秒前
9秒前
简单完成签到,获得积分10
10秒前
jeronimo发布了新的文献求助10
11秒前
zld完成签到,获得积分10
11秒前
大模型应助精明松思采纳,获得10
11秒前
11秒前
11秒前
Ccc完成签到,获得积分10
12秒前
123td发布了新的文献求助10
12秒前
12秒前
13秒前
若米关注了科研通微信公众号
13秒前
ChenChen完成签到,获得积分10
13秒前
迅速的易巧完成签到 ,获得积分10
13秒前
整齐续完成签到,获得积分20
14秒前
浮游应助MOMO采纳,获得10
14秒前
orixero应助府于杰采纳,获得10
14秒前
三木完成签到,获得积分10
15秒前
breaking发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467266
求助须知:如何正确求助?哪些是违规求助? 4570917
关于积分的说明 14327656
捐赠科研通 4497524
什么是DOI,文献DOI怎么找? 2463982
邀请新用户注册赠送积分活动 1452857
关于科研通互助平台的介绍 1427654