Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets

卷积神经网络 计算机科学 人工智能 判别式 掷骰子 边距(机器学习) 模式识别(心理学) 一般化 深度学习 冲程(发动机) 数据集 Sørensen–骰子系数 分割 保险丝(电气) 缺血性中风 相似性(几何) 机器学习 图像分割 医学 图像(数学) 缺血 心脏病学 数学 统计 工程类 数学分析 电气工程 机械工程
作者
Rongzhao Zhang,Lei Zhao,Wutao Lou,Jill Abrigo,Vincent Mok,Chiu‐Wing Winnie Chu,Defeng Wang,Lin Shi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:37 (9): 2149-2160 被引量:195
标识
DOI:10.1109/tmi.2018.2821244
摘要

Acute ischemic stroke is recognized as a common cerebral vascular disease in aging people. Accurate diagnosis and timely treatment can effectively improve the blood supply of the ischemic area and reduce the risk of disability or even death. Understanding the location and size of infarcts plays a critical role in the diagnosis decision. However, manual localization and quantification of stroke lesions are laborious and time-consuming. In this paper, we propose a novel automatic method to segment acute ischemic stroke from diffusion weighted images (DWIs) using deep 3-D convolutional neural networks (CNNs). Our method can efficiently utilize 3-D contextual information and automatically learn very discriminative features in an end-to-end and data-driven way. To relieve the difficulty of training very deep 3-D CNN, we equip our network with dense connectivity to enable the unimpeded propagation of information and gradients throughout the network. We train our model with Dice objective function to combat the severe class imbalance problem in data. A DWI data set containing 242 subjects (90 for training, 62 for validation, and 90 for testing) with various types of acute ischemic stroke was constructed to evaluate our method. Our model achieved high performance on various metrics (Dice similarity coefficient: 79.13%, lesionwise precision: 92.67%, and lesionwise F1 score: 89.25%), outperforming the other state-of-the-art CNN methods by a large margin. We also evaluated the model on ISLES2015-SSIS data set and achieved very competitive performance, which further demonstrated its generalization capacity. The proposed method is fast and accurate, demonstrating a good potential in clinical routines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
咕噜仔发布了新的文献求助10
1秒前
ryx发布了新的文献求助10
1秒前
1秒前
正直灵雁完成签到,获得积分10
1秒前
该换手机完成签到,获得积分10
1秒前
旺大财发布了新的文献求助10
1秒前
2秒前
西瓜汁发布了新的文献求助10
2秒前
小蘑菇应助Iridesent0v0采纳,获得10
2秒前
2秒前
2秒前
上官若男应助阿布采纳,获得10
3秒前
3秒前
MT完成签到,获得积分10
3秒前
3秒前
共享精神应助光亮的绮晴采纳,获得10
4秒前
4秒前
天天快乐应助友好夜蓉采纳,获得10
4秒前
4秒前
天黑不打烊应助玖玖采纳,获得10
5秒前
232314发布了新的文献求助10
6秒前
6秒前
7秒前
田様应助浙江理工大学采纳,获得10
7秒前
7秒前
宋丽娟发布了新的文献求助10
7秒前
毛bobi完成签到,获得积分10
7秒前
英姑应助song采纳,获得10
7秒前
55完成签到,获得积分10
7秒前
吴谷杂粮发布了新的文献求助10
8秒前
樂楽完成签到,获得积分10
8秒前
土豆完成签到,获得积分10
9秒前
南敏株发布了新的文献求助10
9秒前
猫滩儿发布了新的文献求助10
10秒前
Jasper应助知性的路灯采纳,获得10
10秒前
10秒前
11秒前
wang发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3513509
求助须知:如何正确求助?哪些是违规求助? 3095915
关于积分的说明 9229662
捐赠科研通 2791032
什么是DOI,文献DOI怎么找? 1531507
邀请新用户注册赠送积分活动 711525
科研通“疑难数据库(出版商)”最低求助积分说明 706857