Light-induced current mapping in oxide based solar cells with nanoscale resolution

光电流 晶界 材料科学 光电导性 微晶 纳米结构 光电子学 载流子 纳米棒 太阳能电池 光伏系统 纳米尺度 氧化物 纳米技术 聚合物太阳能电池 有机太阳能电池 能量转换效率 光学 微观结构 电气工程 复合材料 工程类 冶金
作者
Shrabani Panigrahi,Tomás Calmeiro,Rodrigo Martins,Elvira Fortunato
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier]
被引量:3
标识
DOI:10.1016/j.solmat.2017.10.012
摘要

Abstract Transport properties of photo-induced charge carriers through different grains in the polycrystalline photovoltaic devices strongly depend on the microstructural pattern of the active layers. Therefore, photocurrent mapping with nanoscale resolution is important to know about the electrical responses of the different grains in the polycrystalline photovoltaic devices. Here, we have used photoconductive atomic force microscopy for mapping the photocurrent with nanoscale resolution of two types of ZnO nanorods/Cu2O based solar cells. The morphology and current have been measured simultaneously with nanoscale resolution from the top surfaces of the devices at different applied voltages. It is demonstrated that the nanostructure of the active layers is one of the most important variables determining device performances. Different local photovoltaic performances have been observed from these two devices due to various microstructural and electrical phenomena of their seed layers. On the other hand, significant variations in short-circuit current have been observed from different grains of the devices which appeared more alike in the micrograph owing to various transport properties of photocarriers. It is observed that the grain boundaries are more preferable for charge collection over the grain interiors. It shows a higher short circuit current close to the boundary than the grain inside. This study illustrates an important area for future fundamental research to enhance the performances of the polycrystalline photovoltaic devices through better control of morphology and improving the inherent properties of the active layers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
menimeni发布了新的文献求助10
1秒前
花见月开完成签到,获得积分10
1秒前
科研通AI2S应助epitome采纳,获得10
1秒前
脑洞疼应助肖恩采纳,获得10
2秒前
科目三应助萧水白采纳,获得100
2秒前
羊羊的蛙发布了新的文献求助10
2秒前
Starry完成签到 ,获得积分10
3秒前
NexusExplorer应助爪人猫采纳,获得10
4秒前
俏皮的冰姬完成签到,获得积分10
4秒前
7秒前
周凡淇发布了新的文献求助10
8秒前
白白SAMA123完成签到,获得积分10
8秒前
姜且发布了新的文献求助10
8秒前
薰硝壤应助诚心的方盒采纳,获得10
8秒前
10秒前
追寻爆米花完成签到 ,获得积分10
10秒前
10秒前
11秒前
球球发布了新的文献求助10
11秒前
12秒前
小马甲应助lan采纳,获得10
12秒前
哎嘿应助Foremelon采纳,获得10
12秒前
susiyiyi完成签到,获得积分10
12秒前
double ting完成签到,获得积分10
14秒前
Pattis完成签到 ,获得积分10
14秒前
Zhouyang完成签到,获得积分10
15秒前
Eileen发布了新的文献求助20
15秒前
神勇凝冬完成签到,获得积分10
15秒前
16秒前
17秒前
20秒前
冷傲星月完成签到,获得积分10
20秒前
ao完成签到,获得积分10
20秒前
陈chq完成签到,获得积分10
21秒前
神勇凝冬发布了新的文献求助10
21秒前
21秒前
zqz发布了新的文献求助30
21秒前
22秒前
24秒前
兔BF完成签到,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148165
求助须知:如何正确求助?哪些是违规求助? 2799249
关于积分的说明 7834127
捐赠科研通 2456451
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655