三螺旋
寡核苷酸
分子动力学
氢键
熔化温度
化学
肽
螺旋(腹足类)
DNA
序列(生物学)
生物物理学
材料科学
结晶学
热力学
分子
物理
生物
计算化学
生物化学
立体化学
生态学
有机化学
蜗牛
复合材料
作者
Joshua E. Condon,Arthi Jayaraman
标识
DOI:10.1021/acs.jpcb.7b10916
摘要
In this paper, we present the development of a phenomenological coarse-grained model that represents single strands of collagen-like peptides (CLPs) as well as CLP triple helices. The goal of this model development is to enable coarse-grained molecular simulations of solutions of CLPs and conjugates of CLPs with other macromolecules and to predict trends in the CLP melting temperature with varying CLP design, namely CLP length and composition. Since the CLP triple helix is stabilized primarily by hydrogen bonds between amino acids in adjacent strands, for modeling CLP melting we get inspiration from a recent coarse-grained (CG) model that was used to capture specific and directional hydrogen-bonding interactions in base-pair hybridization within oligonucleotides and reproduced known DNA melting trends with DNA sequence and composition in implicit water. In this paper, we systematically describe the changes we make to this original CG model and then show that these improvements reproduce the known melting trends of CLPs seen in past experiments. Specifically, the CG simulations of CLP solutions at experimentally relevant concentrations show increasing melting temperature with increasing CLP length and decreasing melting temperature with incorporation of charged residues in place of uncharged residues in the CLP, in agreement with past experimental observations. Finally, results from simulations of CLP triple helices conjugated with elastin like peptides (ELPs), using this new CG model of CLP, reproduce the same trends in ELP aggregation as seen in past experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI