A novel model-based heuristic for energy-optimal motion planning for automated driving

启发式 启发式 数学优化 计算机科学 动态规划 弹道 运动规划 任务(项目管理) 能量(信号处理) 运动(物理) 运筹学 人工智能 算法 工程类 数学 系统工程 机器人 物理 统计 天文
作者
Zlatan Ajanović,Michael Stolz,Martin Horn
出处
期刊:IFAC-PapersOnLine [Elsevier]
卷期号:51 (9): 255-260 被引量:9
标识
DOI:10.1016/j.ifacol.2018.07.042
摘要

Predictive motion planning is the key to achieve energy-efficient driving, which is one of the main benefits of automated driving. Researchers have been studying the planning of velocity trajectories, a simpler form of motion planning, for over a decade now and many different methods are available. Dynamic programming has shown to be the most common choice due to its numerical background and ability to include nonlinear constraints and models. Although planning of an optimal trajectory is done in a systematic way, dynamic programming does not use any knowledge about the considered problem to guide the exploration and therefore explores all possible trajectories. A⁎ is a search algorithm which enables using knowledge about the problem to guide the exploration to the most promising solutions first. Knowledge has to be represented in a form of a heuristic function, which gives an optimistic estimate of cost for transitioning to the final state, which is not a straightforward task. This paper presents a novel heuristics incorporating air drag and auxiliary power as well as operational costs of the vehicle, besides kinetic and potential energy and rolling resistance known in the literature. Furthermore, optimal cruising velocity, which depends on vehicle aerodynamic properties and auxiliary power, is derived. Results are compared for different variants of heuristic functions and dynamic programming as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独孤一草完成签到,获得积分10
1秒前
2秒前
CipherSage应助月流瓦采纳,获得10
3秒前
XLX发布了新的文献求助10
3秒前
minl完成签到 ,获得积分10
4秒前
鲤鱼水桃完成签到,获得积分10
4秒前
Yitianqi完成签到,获得积分20
4秒前
李治稳发布了新的文献求助30
5秒前
5秒前
5秒前
轻松夜山发布了新的文献求助10
5秒前
7秒前
8秒前
健忘可愁完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
lzy完成签到,获得积分20
11秒前
充电宝应助XLX采纳,获得10
13秒前
13秒前
0x3f发布了新的文献求助10
13秒前
轻松夜山完成签到,获得积分20
13秒前
科研小白发布了新的文献求助10
13秒前
watsonhe发布了新的文献求助10
14秒前
15秒前
正直白梅完成签到,获得积分10
16秒前
16秒前
壮观的丑完成签到,获得积分10
16秒前
17秒前
后仰跳投so难完成签到,获得积分10
17秒前
Owen应助Arctic采纳,获得10
18秒前
18秒前
xiaozhao完成签到,获得积分10
19秒前
19秒前
yi417发布了新的文献求助10
19秒前
20秒前
pluto应助一一采纳,获得10
20秒前
21秒前
所所应助阿笠采纳,获得80
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602321
求助须知:如何正确求助?哪些是违规求助? 4687452
关于积分的说明 14849525
捐赠科研通 4683682
什么是DOI,文献DOI怎么找? 2539839
邀请新用户注册赠送积分活动 1506555
关于科研通互助平台的介绍 1471414