生物
棉铃虫
遗传学
Cry1Ac公司
清脆的
基因敲除
基因座(遗传学)
基因
基因组编辑
转座酶
基因组
转座因子
转基因作物
转基因
植物
生殖器鳞翅目
作者
Jing Wang,Huidong Wang,Shaoyan Liu,Laipan Liu,Wee Tek Tay,Tom Walsh,Yihua Yang,Yidong Wu
标识
DOI:10.1016/j.ibmb.2017.07.002
摘要
High levels of resistance to Bt toxin Cry2Ab have been identified to be genetically linked with loss of function mutations of an ABC transporter gene (ABCA2) in two lepidopteran insects, Helicoverpa armigera and Helicoverpa punctigera. To further confirm the causal relationship between the ABCA2 gene (HaABCA2) and Cry2Ab resistance in H. armigera, two HaABCA2 knockout strains were created from the susceptible SCD strain with the CRISPR/Cas9 genome editing system. One strain (SCD-A2KO1) is homozygous for a 2-bp deletion in exon 2 of HaABCA2 created by non-homologous end joining (NHEJ). The other strain (SCD-A2KO2) is homozygous for a 5-bp deletion in exon 18 of HaABCA2 made by homology-directed repair (HDR), which was produced to mimic the r2 resistance allele of a field-derived Cry2Ab-resistant strain from Australia. Both knockout strains obtained high levels of resistance to both Cry2Aa (>120-fold) and Cry2Ab (>100-fold) compared with the original SCD strain, but no or very limited resistance to Cry1Ac (<4-fold). Resistance to Cry2Ab in both knockouts is recessive, and genetic complementary tests confirmed Cry2Ab resistance alleles are at the same locus (i.e. HaABCA2) for the two strains. Brush border membrane vesicles (BBMVs) of midguts from both knockout strains lost binding with Cry2Ab, but maintained the same binding with Cry1Ac as the SCD strain. In vivo functional evidence from this study demonstrates knockout of HaABCA2 confers high levels of resistance to both Cry2Aa and Cry2Ab, confirming that HaABCA2 plays a key role in mediating toxicity of both Cry2Aa and Cry2Ab against H. armigera.
科研通智能强力驱动
Strongly Powered by AbleSci AI