Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping

环境科学 土地覆盖 激光雷达 植被(病理学) 比例(比率) 自然地理学 碳纤维 空间生态学 天蓬 土地利用 碳核算 温室气体 地理 遥感 生态学 地图学 复合材料 考古 材料科学 病理 复合数 生物 医学
作者
Matthew G. E. Mitchell,Kasper Johansen,Martine Maron,Clive McAlpine,Dan Wu,Jonathan R. Rhodes
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:622-623: 57-70 被引量:43
标识
DOI:10.1016/j.scitotenv.2017.11.255
摘要

Urban areas are sources of land use change and CO2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5 × 5 m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5 m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2 ± 0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6 ± 5.8 MgC ha− 1 calculated across the entire urban land area, and 110.9 ± 19.7 Mg C ha− 1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1 km2 and 1 ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旺仔发布了新的文献求助10
3秒前
xybjt完成签到 ,获得积分10
3秒前
范白容发布了新的文献求助10
4秒前
n3pu030036完成签到,获得积分20
4秒前
4秒前
XLC发布了新的文献求助10
5秒前
5秒前
露珠完成签到,获得积分10
6秒前
6秒前
6秒前
寒冷诗霜应助完美的雪旋采纳,获得10
7秒前
8秒前
早日毕业完成签到 ,获得积分10
8秒前
584178682发布了新的文献求助10
10秒前
10秒前
mei发布了新的文献求助10
11秒前
打打应助nn采纳,获得10
11秒前
桐桐应助xuhaha098采纳,获得10
11秒前
与我常在完成签到,获得积分10
12秒前
露珠发布了新的文献求助10
13秒前
14秒前
科研通AI5应助yan采纳,获得10
14秒前
伍柒叁发布了新的文献求助10
15秒前
15秒前
Persist6578完成签到 ,获得积分10
15秒前
在水一方应助Yimi采纳,获得10
15秒前
脆鹅应助lewu采纳,获得10
16秒前
16秒前
完美的雪旋完成签到,获得积分10
17秒前
卡卡西西西完成签到,获得积分10
18秒前
songyu发布了新的文献求助20
18秒前
584178682完成签到,获得积分10
19秒前
Jacob完成签到,获得积分10
21秒前
n3pu030036发布了新的文献求助100
21秒前
何女士发布了新的文献求助10
21秒前
li发布了新的文献求助10
21秒前
23秒前
科研通AI2S应助瀛瀛采纳,获得10
23秒前
24秒前
Yasing完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774420
求助须知:如何正确求助?哪些是违规求助? 3320102
关于积分的说明 10198473
捐赠科研通 3034719
什么是DOI,文献DOI怎么找? 1665122
邀请新用户注册赠送积分活动 796697
科研通“疑难数据库(出版商)”最低求助积分说明 757549