Machinery health prognostics: A systematic review from data acquisition to RUL prediction

预言 过程(计算) 领域(数学) 可靠性工程 数据采集 计算机科学 数据挖掘 数据科学 工程类 系统工程 风险分析(工程) 数学 医学 操作系统 纯数学
作者
Yaguo Lei,Naipeng Li,Liang Guo,Ningbo Li,Tao Yan,Jing Lin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:104: 799-834 被引量:2165
标识
DOI:10.1016/j.ymssp.2017.11.016
摘要

Machinery prognostics is one of the major tasks in condition based maintenance (CBM), which aims to predict the remaining useful life (RUL) of machinery based on condition information. A machinery prognostic program generally consists of four technical processes, i.e., data acquisition, health indicator (HI) construction, health stage (HS) division, and RUL prediction. Over recent years, a significant amount of research work has been undertaken in each of the four processes. And much literature has made an excellent overview on the last process, i.e., RUL prediction. However, there has not been a systematic review that covers the four technical processes comprehensively. To fill this gap, this paper provides a review on machinery prognostics following its whole program, i.e., from data acquisition to RUL prediction. First, in data acquisition, several prognostic datasets widely used in academic literature are introduced systematically. Then, commonly used HI construction approaches and metrics are discussed. After that, the HS division process is summarized by introducing its major tasks and existing approaches. Afterwards, the advancements of RUL prediction are reviewed including the popular approaches and metrics. Finally, the paper provides discussions on current situation, upcoming challenges as well as possible future trends for researchers in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助棋士采纳,获得10
1秒前
1秒前
顾矜应助典雅的悟空采纳,获得10
1秒前
威fly完成签到,获得积分10
4秒前
缥缈傥发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
隐形之玉完成签到,获得积分10
7秒前
小铃铛发布了新的文献求助50
8秒前
菌子锅完成签到,获得积分20
8秒前
8秒前
州州完成签到,获得积分10
8秒前
Boro完成签到,获得积分10
10秒前
10秒前
yydlt完成签到,获得积分10
11秒前
小二郎应助llll采纳,获得10
11秒前
harry应助纸轮采纳,获得10
12秒前
乐乐应助蔚蓝天空采纳,获得10
12秒前
无花果应助可爱的兔兔采纳,获得10
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
19秒前
研友_EZ1oWL发布了新的文献求助10
19秒前
20秒前
彭于晏应助hhh采纳,获得30
20秒前
linmo发布了新的文献求助10
20秒前
温婉的从凝完成签到,获得积分20
22秒前
孟梦完成签到 ,获得积分20
22秒前
23秒前
平贝花应助mtfx采纳,获得10
24秒前
pyh发布了新的文献求助10
24秒前
25秒前
yao发布了新的文献求助10
26秒前
火星上的诗兰完成签到,获得积分10
26秒前
26秒前
xiaoxie发布了新的文献求助20
27秒前
29秒前
pyh关闭了pyh文献求助
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176