Agent-Based Modeling of Retail Electrical Energy Markets With Demand Response

需求响应 利润(经济学) 计算机科学 多智能体系统 层次分析法 过程(计算) 虚构的游戏 决策模型 运筹学 博弈论 人工智能 机器学习 微观经济学 经济 工程类 操作系统 电气工程
作者
Kaveh Dehghanpour,M.H. Nehrir,John W. Sheppard,Nathan C. Kelly
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:9 (4): 3465-3475 被引量:101
标识
DOI:10.1109/tsg.2016.2631453
摘要

In this paper, we study the behavior of a day-ahead (DA) retail electrical energy market with price-based demand response from air conditioning (AC) loads through a hierarchical multiagent framework, employing a machine learning approach. At the top level of the hierarchy, a retailer agent buys energy from the DA wholesale market and sells it to the consumers. The goal of the retailer agent is to maximize its profit by setting the optimal retail prices, considering the response of the price-sensitive loads. Upon receiving the retail prices, at the lower level of the hierarchy, the AC agents employ a Q-learning algorithm to optimize their consumption patterns through modifying the temperature set-points of the devices, considering both consumption costs and users' comfort preferences. Since the retailer agent does not have direct access to the AC loads' underlying dynamics and decision process (i.e., incomplete information) the data privacy of the consumers becomes a source of uncertainty in the retailer's decision model. The retailer relies on techniques from the field of machine learning to develop a reliable model of the aggregate behavior of the price-sensitive loads to reduce the uncertainty of the decision-making process. Hence, a multiagent framework based on machine learning enables us to address issues such as interoperability and decision-making under incomplete information in a system that maintains the data privacy of the consumers. We will show that using the proposed model, all the agents are able to optimize their behavior simultaneously. Simulation results show that the proposed approach leads to a reduction in overall power consumption cost as the system converges to its equilibrium. This also coincides with maximization in the retailer's profit. We will also show that the same decision architecture can be used to reduce peak load to defer/avoid distribution system upgrades under high penetration of photo-voltaic power in the distribution feeder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念之深澜完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
SciGPT应助smart丁丁采纳,获得10
4秒前
彭于晏应助xxx采纳,获得10
5秒前
小猪发布了新的文献求助10
5秒前
姽婳wy发布了新的文献求助10
5秒前
李常轩完成签到,获得积分10
5秒前
解靖宇完成签到,获得积分10
5秒前
yotta应助小西瓜采纳,获得10
6秒前
7秒前
wpzzpw完成签到,获得积分10
7秒前
解靖宇发布了新的文献求助30
8秒前
妮妮你发布了新的文献求助10
9秒前
爆米花应助夕荀采纳,获得10
9秒前
9秒前
保温杯坏了完成签到 ,获得积分10
10秒前
高分子狗发布了新的文献求助10
11秒前
111111发布了新的文献求助10
13秒前
Albert发布了新的文献求助10
13秒前
14秒前
烹全鱼宴发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
16完成签到 ,获得积分10
20秒前
sdsa完成签到,获得积分10
20秒前
大维发布了新的文献求助50
20秒前
夕荀发布了新的文献求助10
20秒前
20秒前
香蕉觅云应助长京采纳,获得10
22秒前
西风驿马完成签到,获得积分10
23秒前
aass发布了新的文献求助50
23秒前
23秒前
Albert发布了新的文献求助10
24秒前
sdsa发布了新的文献求助10
24秒前
hou发布了新的文献求助10
24秒前
小西瓜完成签到,获得积分10
24秒前
25秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422167
求助须知:如何正确求助?哪些是违规求助? 3022590
关于积分的说明 8901481
捐赠科研通 2709974
什么是DOI,文献DOI怎么找? 1486247
科研通“疑难数据库(出版商)”最低求助积分说明 686963
邀请新用户注册赠送积分活动 682186