Improving Interfacial Charge Recombination in Planar Heterojunction Perovskite Photovoltaics with Small Molecule as Electron Transport Layer

材料科学 钙钛矿(结构) 光伏 平面的 能量转换效率 异质结 光电子学 图层(电子) 电子迁移率 溶解过程 小分子 电子 光伏系统 纳米技术 化学工程 电气工程 工程类 计算机图形学(图像) 物理 化学 量子力学 生物化学 计算机科学
作者
Ning Wang,Kexiang Zhao,Tao Ding,Wenbo Liu,Ali Said Ahmed,Zongrui Wang,Miaomiao Tian,Xiao Wei Sun,Qichun Zhang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:7 (18) 被引量:187
标识
DOI:10.1002/aenm.201700522
摘要

Although perovskite solar cells (PSCs) have emerged as a promising alternative to widely used fossil fuels, the involved high‐temperature preparation of metal oxides as a charge transport layer in most state‐of‐the‐art PSCs has been becoming a big stumbling block for future low‐temperature and large‐scale R2R manufacturing process. Such an issue strongly encourages scientists to find new type of materials to replace metal oxides. Except for expensive PC 61 BM with unmanageable morphology and electrical properties, the past investigation on the development of low‐temperature‐processed and highly efficient electron transport layers (ETLs) has met some mixed success. In order to further enhance the performance of all‐solution‐processed PSCs, we propose a novel n‐type sulfur‐containing small molecule hexaazatrinaphtho[2,3‐c][1,2,5]thiadiazole (HATNT) with high electron mobility up to 1.73 × 10 −2 cm 2 V −1 s −1 as an ETL in planar heterojunction PSCs. A high power conversion efficiency of 18.1% is achieved, which is fully comparable with the efficiency from the control device fabricated with PC 61 BM as ETL. This superior performance mainly attributes from more effective suppression of charge recombination at the perovskite/HATNT interface than that between the perovskite and PC 61 BM. Moreover, high electron mobility and strong interfacial interaction via SI or SPb bonding should be also positive factors. Significantly, our results undoubtedly enable new guidelines in exploring n‐type organic small molecules for high‐performance PSCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
年轻冥茗完成签到,获得积分10
刚刚
apple发布了新的文献求助10
1秒前
CarterXD完成签到,获得积分10
1秒前
紧张的友灵完成签到,获得积分10
1秒前
SciGPT应助之仔饼采纳,获得10
2秒前
liudiqiu应助追寻的易烟采纳,获得10
2秒前
Chem is try发布了新的文献求助10
2秒前
2秒前
vsoar完成签到,获得积分10
2秒前
3秒前
4秒前
GGGGGGGGGG发布了新的文献求助10
4秒前
4秒前
打打应助hhh采纳,获得10
5秒前
抓恐龙关注了科研通微信公众号
5秒前
碳点godfather完成签到,获得积分10
5秒前
ren完成签到,获得积分20
5秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
6秒前
TG_FY完成签到,获得积分10
6秒前
6秒前
hhh完成签到,获得积分10
6秒前
JamesPei应助诗轩采纳,获得10
7秒前
TT完成签到,获得积分10
8秒前
reck发布了新的文献求助10
8秒前
9秒前
DK发布了新的文献求助10
9秒前
英俊的铭应助ren采纳,获得10
9秒前
圈圈发布了新的文献求助10
9秒前
乐乱完成签到 ,获得积分10
10秒前
415484112完成签到,获得积分10
11秒前
yinyi发布了新的文献求助10
11秒前
11秒前
赵一丁完成签到,获得积分10
12秒前
成就绮琴完成签到 ,获得积分10
12秒前
Chen完成签到,获得积分10
12秒前
huanfid完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672