The role of entropy of review text sentiments on online WOM and movie box office sales

情绪分析 采购 价(化学) 可靠性 熵(时间箭头) 票房 广告 计算机科学 心理学 营销 业务 自然语言处理 政治学 量子力学 物理 法学
作者
Jong Hyup Lee,Sun Ho Jung,JaeHong Park
出处
期刊:Electronic Commerce Research and Applications [Elsevier BV]
卷期号:22: 42-52 被引量:57
标识
DOI:10.1016/j.elerap.2017.03.001
摘要

Sentiments from online word-of-mouth (WOM) are often controversial, since individuals have different preferences toward the same products. Past studies have focused on online WOM effects by measuring WOM volume and valence. However, few studies have investigated how the entropy of the review text sentiment influences the relationship between online WOM and product sales. As WOM valence and volume are usually provided at an aggregated level, consumers often do not have enough information to make a decision. In this case, reading online review text has become an important process for consumers to make purchasing decisions. However, when consumers encounter too many positive review texts, they may doubt the credibility of online WOM itself. Thus, we analyzed the entropy of the review text sentiments by conducting text-mining techniques. We classified review text sentiment into positive, negative, and neutral categories and created an entropy variable. A high level of entropy in review texts indicates that sentiment from review texts are equally distributed, but not biased, towards positive or negative sentiment. We estimated our research model with the entropy variable in a panel dataset for 204 movies over a half-year period. The results suggest that the entropy level in the review texts has a positive moderating impact on the relationship between WOM (e.g., valence and volume) and movie box office sales. The findings imply that deleting negative reviews to enhance product sales may not help online retailers or related parties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
明理文龙完成签到,获得积分20
刚刚
鲸鱼发布了新的文献求助10
1秒前
蜀黍完成签到,获得积分10
1秒前
灵犀完成签到 ,获得积分10
1秒前
1秒前
lulu发布了新的文献求助10
2秒前
2秒前
Orange应助科研不懂12采纳,获得10
3秒前
帅气凝云发布了新的文献求助10
3秒前
光亮之桃发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
研友_nEW4G8发布了新的文献求助10
5秒前
6秒前
wsl_csu发布了新的文献求助30
7秒前
orixero应助帅气凝云采纳,获得10
8秒前
8秒前
xuxingjie发布了新的文献求助10
9秒前
dique3hao完成签到 ,获得积分10
12秒前
whocare发布了新的文献求助10
13秒前
jiaqiLi发布了新的文献求助10
13秒前
14秒前
在水一方应助lianhe采纳,获得10
15秒前
fh完成签到 ,获得积分10
16秒前
科研通AI5应助DH采纳,获得10
16秒前
17秒前
哈哈哈哈发布了新的文献求助10
17秒前
18秒前
lyt发布了新的文献求助10
20秒前
1947188918完成签到,获得积分10
20秒前
乐乐应助song采纳,获得10
21秒前
21秒前
岁岁平岁岁安完成签到,获得积分20
22秒前
遇上就这样吧给庸人何必自扰的求助进行了留言
22秒前
23秒前
量子星尘发布了新的文献求助200
23秒前
丰丰发布了新的文献求助10
23秒前
小吴发布了新的文献求助10
23秒前
LIU发布了新的文献求助10
23秒前
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981