Innovation performance of Italian manufacturing firms

业务 杠杆(统计) 创新者 产业组织 制造业 吸收能力 高科技 样品(材料) 独创性 营销 计算机科学 创业 机器学习 色谱法 政治学 化学 法学 创造力 财务
作者
Fábio de Oliveira Paula,Jorge Ferreira da Silva
出处
期刊:European Journal of Innovation Management [Emerald (MCB UP)]
卷期号:20 (3): 428-445 被引量:24
标识
DOI:10.1108/ejim-12-2016-0119
摘要

Purpose The purpose of this paper is to explain how internal and external sources of knowledge influence the innovation performance (IP) in Italian manufacturing firms and how different these relationships are for low-technology (LT) and high-technology (HT) firms. Design/methodology/approach The study proposed a model relating external knowledge, internal knowledge and IP that was tested using Bayesian structural equation modeling with a sample of Italian manufacturing firms of Community Innovation Survey 2010. It was run separately for high-tech firms (including HT and medium-HT aggregations of manufacturing industries of NACE Rev. 2) and low-tech firms (including LT and medium-LT aggregations). Findings The results showed a difference between high-tech and low-tech manufacturing firms in Italy. The investments to leverage internal knowledge sources are important for high-techs and not significant for low-techs. On the other hand, the level of external KS improves significantly the IP of low-techs and has a negative effect for high-techs. The level of absorptive capacity is central to improve the positive effect of the external knowledge on the IP for all firms, but it is still underdeveloped. Originality/value The effects of 2008 economic crisis hit the Italian manufacturing industry specifically hard and are still felt. Innovation is a solution for firms’ growth and Italy is considered a below-average innovator country in Europe. The study could identify important gaps in Italian manufacturing firms that hinder their innovative performance improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助shouyi886采纳,获得10
刚刚
在水一方应助leranlily采纳,获得10
刚刚
不想起名字完成签到,获得积分10
刚刚
傲天大侠完成签到 ,获得积分10
刚刚
non发布了新的文献求助10
1秒前
1秒前
阳光彩虹小白马完成签到,获得积分20
1秒前
LIUUU完成签到,获得积分10
1秒前
传奇3应助like采纳,获得10
1秒前
2秒前
wg发布了新的文献求助10
2秒前
慕言完成签到 ,获得积分10
3秒前
3秒前
田様应助zouzou采纳,获得10
3秒前
3秒前
sssxxx完成签到,获得积分10
3秒前
4秒前
斩渔发布了新的文献求助10
5秒前
xyy完成签到,获得积分10
5秒前
Niki发布了新的文献求助20
5秒前
完美世界应助炙热果汁采纳,获得10
5秒前
螺内酯发布了新的文献求助10
5秒前
5秒前
巧克力完成签到,获得积分10
6秒前
6秒前
Maxwell完成签到,获得积分10
6秒前
Wen发布了新的文献求助10
6秒前
薏米发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
郭濹涵发布了新的文献求助10
7秒前
8秒前
阳光彩虹小白马关注了科研通微信公众号
8秒前
星辰大海应助QIQI采纳,获得10
8秒前
875259完成签到,获得积分10
9秒前
9秒前
ding应助恩恩天天开心采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894