已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Innovation performance of Italian manufacturing firms

业务 杠杆(统计) 创新者 产业组织 制造业 吸收能力 高科技 样品(材料) 独创性 营销 计算机科学 创业 化学 财务 色谱法 机器学习 政治学 创造力 法学
作者
Fábio de Oliveira Paula,Jorge Ferreira da Silva
出处
期刊:European Journal of Innovation Management [Emerald (MCB UP)]
卷期号:20 (3): 428-445 被引量:24
标识
DOI:10.1108/ejim-12-2016-0119
摘要

Purpose The purpose of this paper is to explain how internal and external sources of knowledge influence the innovation performance (IP) in Italian manufacturing firms and how different these relationships are for low-technology (LT) and high-technology (HT) firms. Design/methodology/approach The study proposed a model relating external knowledge, internal knowledge and IP that was tested using Bayesian structural equation modeling with a sample of Italian manufacturing firms of Community Innovation Survey 2010. It was run separately for high-tech firms (including HT and medium-HT aggregations of manufacturing industries of NACE Rev. 2) and low-tech firms (including LT and medium-LT aggregations). Findings The results showed a difference between high-tech and low-tech manufacturing firms in Italy. The investments to leverage internal knowledge sources are important for high-techs and not significant for low-techs. On the other hand, the level of external KS improves significantly the IP of low-techs and has a negative effect for high-techs. The level of absorptive capacity is central to improve the positive effect of the external knowledge on the IP for all firms, but it is still underdeveloped. Originality/value The effects of 2008 economic crisis hit the Italian manufacturing industry specifically hard and are still felt. Innovation is a solution for firms’ growth and Italy is considered a below-average innovator country in Europe. The study could identify important gaps in Italian manufacturing firms that hinder their innovative performance improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LNE完成签到,获得积分10
1秒前
1秒前
2秒前
NexusExplorer应助LELE采纳,获得10
4秒前
5秒前
所所应助mly采纳,获得10
5秒前
李骞发布了新的文献求助10
5秒前
KUKU发布了新的文献求助10
6秒前
6秒前
cccxxi发布了新的文献求助10
7秒前
研友_LJGoXn发布了新的文献求助10
8秒前
8秒前
英俊的铭应助香草哥采纳,获得10
8秒前
xiaogao关注了科研通微信公众号
9秒前
10秒前
seven发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
14秒前
15秒前
16秒前
LELE发布了新的文献求助10
17秒前
解松发布了新的文献求助10
17秒前
18秒前
绿野仙踪完成签到,获得积分10
18秒前
糊涂的白梦完成签到,获得积分10
19秒前
atcha完成签到 ,获得积分10
19秒前
嵇如雪完成签到,获得积分10
20秒前
无奈问儿发布了新的文献求助10
22秒前
23秒前
23秒前
25秒前
26秒前
鳗鱼夜香发布了新的文献求助20
26秒前
识趣发布了新的文献求助10
26秒前
Lisen发布了新的文献求助10
28秒前
酥小苏发布了新的文献求助30
29秒前
完美世界应助DingShicong采纳,获得10
30秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491104
求助须知:如何正确求助?哪些是违规求助? 3077781
关于积分的说明 9150387
捐赠科研通 2770232
什么是DOI,文献DOI怎么找? 1520217
邀请新用户注册赠送积分活动 704513
科研通“疑难数据库(出版商)”最低求助积分说明 702196