Machine Learning for Estimating Heterogeneous Causal Effects

因果推理 结果(博弈论) 推论 机器学习 预测能力 随机森林 回归 计算机科学 人工智能 计量经济学 Lasso(编程语言) 人口 观察研究 因果模型
作者
Susan Athey,Guido W. Imbens
出处
期刊:Research Papers in Economics 被引量:4
摘要

In this paper we study the problems of estimating heterogeneity in causal effects in experimental or observational studies and conducting inference about the magnitude of the differences in treatment effects across subsets of the population. In applications, our method provides a data-driven approach to determine which subpopulations have large or small treatment effects and to test hypotheses about the differences in these effects. For experiments, our method allows researchers to identify heterogeneity in treatment effects that was not specified in a pre-analysis plan, without concern about invalidating inference due to multiple testing. In most of the literature on supervised machine learning (e.g. regression trees, random forests, LASSO, etc.), the goal is to build a model of the relationship between a unit's attributes and an observed outcome. A prominent role in these methods is played by cross-validation which compares predictions to actual outcomes in test samples, in order to select the level of complexity of the model that provides the best predictive power. Our method is closely related, but it differs in that it is tailored for predicting causal effects of a treatment rather than a unit's outcome. The challenge is that the ground truth for a causal effect is not observed for any individual unit: we observe the unit with the treatment, or without the treatment, but not both at the same time. Thus, it is not obvious how to use cross-validation to determine whether a causal effect has been accurately predicted. We propose several novel cross-validation criteria for this problem and demonstrate through simulations the conditions under which they perform better than standard methods for the problem of causal effects. We then apply the method to a large-scale field experiment re-ranking results on a search engine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
影子发布了新的文献求助10
1秒前
早睡早起身体好完成签到,获得积分10
2秒前
caicai完成签到,获得积分10
2秒前
3秒前
3秒前
乔乔兔应助美女采纳,获得10
4秒前
tree发布了新的文献求助10
5秒前
6秒前
代代完成签到,获得积分20
6秒前
自由隶发布了新的文献求助10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
猪猪hero应助科研通管家采纳,获得10
7秒前
潇洒飞丹应助科研通管家采纳,获得30
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
arabidopsis应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
liaodongjun应助科研通管家采纳,获得200
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
8秒前
arabidopsis应助科研通管家采纳,获得10
8秒前
Ava应助学霸宇大王采纳,获得30
13秒前
王珏珏发布了新的文献求助50
14秒前
bkagyin应助群q采纳,获得10
14秒前
Yelanjiao发布了新的文献求助10
16秒前
脑洞疼应助逸晨采纳,获得10
16秒前
自由隶完成签到,获得积分10
16秒前
16秒前
李爱国应助YYYU采纳,获得10
18秒前
代代发布了新的文献求助10
19秒前
星辰大海应助小吕小吕采纳,获得10
19秒前
可爱的函函应助小吕小吕采纳,获得10
19秒前
晨曦应助小吕小吕采纳,获得20
19秒前
安渝完成签到 ,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962593
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141766
捐赠科研通 3241330
什么是DOI,文献DOI怎么找? 1791510
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803483