Machine Learning for Estimating Heterogeneous Causal Effects

因果推理 结果(博弈论) 推论 机器学习 预测能力 随机森林 回归 计算机科学 人工智能 计量经济学 Lasso(编程语言) 人口 观察研究 因果模型
作者
Susan Athey,Guido W. Imbens
出处
期刊:Research Papers in Economics 被引量:4
摘要

In this paper we study the problems of estimating heterogeneity in causal effects in experimental or observational studies and conducting inference about the magnitude of the differences in treatment effects across subsets of the population. In applications, our method provides a data-driven approach to determine which subpopulations have large or small treatment effects and to test hypotheses about the differences in these effects. For experiments, our method allows researchers to identify heterogeneity in treatment effects that was not specified in a pre-analysis plan, without concern about invalidating inference due to multiple testing. In most of the literature on supervised machine learning (e.g. regression trees, random forests, LASSO, etc.), the goal is to build a model of the relationship between a unit's attributes and an observed outcome. A prominent role in these methods is played by cross-validation which compares predictions to actual outcomes in test samples, in order to select the level of complexity of the model that provides the best predictive power. Our method is closely related, but it differs in that it is tailored for predicting causal effects of a treatment rather than a unit's outcome. The challenge is that the ground truth for a causal effect is not observed for any individual unit: we observe the unit with the treatment, or without the treatment, but not both at the same time. Thus, it is not obvious how to use cross-validation to determine whether a causal effect has been accurately predicted. We propose several novel cross-validation criteria for this problem and demonstrate through simulations the conditions under which they perform better than standard methods for the problem of causal effects. We then apply the method to a large-scale field experiment re-ranking results on a search engine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
li完成签到,获得积分10
1秒前
令狐冲应助自然天思采纳,获得10
1秒前
zz完成签到,获得积分10
1秒前
多情以山完成签到 ,获得积分10
1秒前
科研小崩豆完成签到,获得积分10
2秒前
01231009yrjz完成签到,获得积分10
3秒前
FJ完成签到,获得积分10
3秒前
紫云发布了新的文献求助10
3秒前
眼睛大的寄真完成签到 ,获得积分10
3秒前
4秒前
hqhq555完成签到 ,获得积分10
4秒前
肚皮完成签到 ,获得积分10
5秒前
王哪跑12发布了新的文献求助10
5秒前
小炮弹完成签到,获得积分20
5秒前
6秒前
自然篮球完成签到,获得积分10
6秒前
张张张完成签到 ,获得积分10
7秒前
7秒前
昵称给昵称的求助进行了留言
7秒前
潘榆发布了新的文献求助10
9秒前
魔幻高烽发布了新的文献求助10
10秒前
10秒前
炸鸡完成签到 ,获得积分10
10秒前
caihong完成签到 ,获得积分10
11秒前
sunshine发布了新的文献求助10
11秒前
byelue发布了新的文献求助30
11秒前
breath完成签到,获得积分10
12秒前
机灵夜云完成签到,获得积分10
13秒前
mini昕完成签到,获得积分10
13秒前
kangkang完成签到,获得积分10
15秒前
量子力学完成签到,获得积分10
15秒前
15秒前
honghong完成签到,获得积分20
15秒前
16秒前
顾矜应助wangayting采纳,获得30
19秒前
20秒前
LeoYiS214完成签到,获得积分10
20秒前
整齐泥猴桃完成签到 ,获得积分10
20秒前
小高同学发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011