Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

医学 糖尿病性视网膜病变 眼底(子宫) 卷积神经网络 视网膜 算法 眼科 黄斑水肿 人工智能 数据集 深度学习 验光服务 糖尿病 计算机科学 内分泌学
作者
Varun Gulshan,Lily Peng,Marc Coram,Martin C. Stumpe,Derek Wu,Arunachalam Narayanaswamy,Subhashini Venugopalan,Kasumi Widner,T. Madams,Jorge Cuadros,Kim Ramasamy,Rajiv Raman,Philip Nelson,Jessica L. Mega,Dale R. Webster
出处
期刊:JAMA [American Medical Association]
卷期号:316 (22): 2402-2402 被引量:5895
标识
DOI:10.1001/jama.2016.17216
摘要

Importance

Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.

Objective

To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs.

Design and Setting

A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.

Exposure

Deep learning–trained algorithm.

Main Outcomes and Measures

The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity.

Results

The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%.

Conclusions and Relevance

In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
华仔应助qiqi采纳,获得10
刚刚
司徒迎曼发布了新的文献求助10
1秒前
runtang完成签到,获得积分10
1秒前
1秒前
1秒前
sdf发布了新的文献求助10
2秒前
2秒前
a成完成签到 ,获得积分10
2秒前
line发布了新的文献求助10
2秒前
3秒前
英姑应助研友_qZ6V1Z采纳,获得10
3秒前
JamesPei应助宋博凯采纳,获得10
3秒前
鱼儿完成签到,获得积分10
3秒前
3秒前
菜鸡学VASP发布了新的文献求助10
4秒前
zzzhhh完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
mmmmmm发布了新的文献求助10
6秒前
LFC发布了新的文献求助10
6秒前
Ava应助好玩和有趣采纳,获得10
6秒前
李子完成签到,获得积分10
6秒前
ZYCong发布了新的文献求助10
7秒前
7秒前
阿睿发布了新的文献求助10
8秒前
大个应助司徒迎曼采纳,获得10
8秒前
8秒前
啊喃发布了新的文献求助10
9秒前
打打应助林林总总采纳,获得10
9秒前
9秒前
9秒前
Zzskrrrr发布了新的文献求助10
10秒前
董不懂完成签到,获得积分10
10秒前
哎嘿应助认真科研采纳,获得10
10秒前
吴梅应助认真科研采纳,获得10
10秒前
泡芙完成签到 ,获得积分10
10秒前
yuan1yuan2完成签到 ,获得积分10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760