Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

医学 糖尿病性视网膜病变 眼底(子宫) 卷积神经网络 视网膜 算法 眼科 黄斑水肿 人工智能 数据集 深度学习 验光服务 糖尿病 计算机科学 内分泌学
作者
Varun Gulshan,Lily Peng,Marc Coram,Martin C. Stumpe,Derek Wu,Arunachalam Narayanaswamy,Subhashini Venugopalan,Kasumi Widner,T. Madams,Jorge Cuadros,Kim Ramasamy,Rajiv Raman,Philip Nelson,Jessica L. Mega,Dale R. Webster
出处
期刊:JAMA [American Medical Association]
卷期号:316 (22): 2402-2402 被引量:6183
标识
DOI:10.1001/jama.2016.17216
摘要

Deep learning is a family of computational methods that allow an algorithm to program itself by learning from a large set of examples that demonstrate the desired behavior, removing the need to specify rules explicitly. Application of these methods to medical imaging requires further assessment and validation.To apply deep learning to create an algorithm for automated detection of diabetic retinopathy and diabetic macular edema in retinal fundus photographs.A specific type of neural network optimized for image classification called a deep convolutional neural network was trained using a retrospective development data set of 128 175 retinal images, which were graded 3 to 7 times for diabetic retinopathy, diabetic macular edema, and image gradability by a panel of 54 US licensed ophthalmologists and ophthalmology senior residents between May and December 2015. The resultant algorithm was validated in January and February 2016 using 2 separate data sets, both graded by at least 7 US board-certified ophthalmologists with high intragrader consistency.Deep learning-trained algorithm.The sensitivity and specificity of the algorithm for detecting referable diabetic retinopathy (RDR), defined as moderate and worse diabetic retinopathy, referable diabetic macular edema, or both, were generated based on the reference standard of the majority decision of the ophthalmologist panel. The algorithm was evaluated at 2 operating points selected from the development set, one selected for high specificity and another for high sensitivity.The EyePACS-1 data set consisted of 9963 images from 4997 patients (mean age, 54.4 years; 62.2% women; prevalence of RDR, 683/8878 fully gradable images [7.8%]); the Messidor-2 data set had 1748 images from 874 patients (mean age, 57.6 years; 42.6% women; prevalence of RDR, 254/1745 fully gradable images [14.6%]). For detecting RDR, the algorithm had an area under the receiver operating curve of 0.991 (95% CI, 0.988-0.993) for EyePACS-1 and 0.990 (95% CI, 0.986-0.995) for Messidor-2. Using the first operating cut point with high specificity, for EyePACS-1, the sensitivity was 90.3% (95% CI, 87.5%-92.7%) and the specificity was 98.1% (95% CI, 97.8%-98.5%). For Messidor-2, the sensitivity was 87.0% (95% CI, 81.1%-91.0%) and the specificity was 98.5% (95% CI, 97.7%-99.1%). Using a second operating point with high sensitivity in the development set, for EyePACS-1 the sensitivity was 97.5% and specificity was 93.4% and for Messidor-2 the sensitivity was 96.1% and specificity was 93.9%.In this evaluation of retinal fundus photographs from adults with diabetes, an algorithm based on deep machine learning had high sensitivity and specificity for detecting referable diabetic retinopathy. Further research is necessary to determine the feasibility of applying this algorithm in the clinical setting and to determine whether use of the algorithm could lead to improved care and outcomes compared with current ophthalmologic assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ricky完成签到,获得积分10
刚刚
上官若男应助luuuuuu采纳,获得10
刚刚
杨永亮完成签到,获得积分10
1秒前
1秒前
袁粪到了完成签到 ,获得积分10
1秒前
1秒前
异烟肼完成签到 ,获得积分10
1秒前
Jenny应助通~采纳,获得10
1秒前
yory完成签到 ,获得积分10
2秒前
2秒前
远航完成签到 ,获得积分10
2秒前
2秒前
彭于晏应助Rrr采纳,获得10
2秒前
卓然发布了新的文献求助10
2秒前
精明的中蓝完成签到,获得积分10
3秒前
66应助小钻风采纳,获得10
3秒前
3秒前
领导范儿应助星星采纳,获得10
4秒前
汉堡包应助shotgod采纳,获得10
4秒前
如寄完成签到 ,获得积分10
4秒前
顾闭月发布了新的文献求助10
5秒前
研友_VZG7GZ应助石头采纳,获得10
5秒前
有益发布了新的文献求助10
6秒前
xibei完成签到 ,获得积分10
6秒前
7秒前
丘比特应助爱吃肉的猪采纳,获得10
7秒前
7秒前
7秒前
dyh6802发布了新的文献求助10
7秒前
8秒前
Wxx完成签到 ,获得积分10
8秒前
七栀完成签到,获得积分10
8秒前
科研通AI2S应助阿芙乐尔采纳,获得10
10秒前
一条贤与完成签到,获得积分20
10秒前
11秒前
11秒前
yl完成签到,获得积分10
11秒前
泊声完成签到,获得积分20
12秒前
su发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794