Application of cascaded GAN based on CT scan in the diagnosis of aortic dissection

主动脉夹层 医学 鉴别器 放射科 人工智能 计算机科学 主动脉 心脏病学 电信 探测器
作者
Hongwei Chen,Sunang Yan,Mingxing Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107130-107130 被引量:8
标识
DOI:10.1016/j.cmpb.2022.107130
摘要

Currently, Computed Tomography Angiography (CTA) is the most commonly used clinical method for the diagnosis of aortic dissection, which is much better than plain CT. However, CTA examination has some disadvantages such as time-consuming image processing, complicated procedure and injection of developer. CT plain scanning is widely used in the early diagnosis of arterial dissection because of its convenience, speed and popularity. In order not to delay the optimal diagnosis and treatment time of patients, we use deep learning technology and network model to synthesize plain CT images into CTA images. Patients can be timely professional related departments of clinical diagnosis and treatment, and reduce the rate of missed diagnosis. In this paper, we propose a CTA image synthesis technique for cardiac aortic dissection based on the cascaded generative adjunctive network model.Firstly, we registered CT images, and then used nnU-Net segmentation network model to obtain CT and CTA paired images containing only the aorta. Then we proposed a CTA image synthesis method for aortic dissection based on cascaded generative adversarial. The core idea is to build a cascade generator and double discriminator network based on DCT channel attention mechanism to further enhance the synthesis effect of CTA.The model is trained and tested on CT plain scan and CTA image data set of aortic dissection. The results show that the proposed model achieves good results in CTA image synthesis. In the CT data set, the nnU-Net model improves 8.63% and reduces 10.87mm errors in the key index DSC and HD, respectively, compared with the benchmark model U-Net. In CTA data set, nnU-Net model improves 10.27% and reduces 6.56mm error in key index DSC and HD, respectively, compared with benchmark model U-Net. In the synthesis task, the cascaded generative adm network is superior to Pix2pix and Pix2pixHD network models in both PSNR and SSIM, which proves that our proposed model has significant advantages.This study provides new possibilities for CTA image synthesis of aortic dissection, and improves the accuracy and efficiency of diagnosis, and hopes to provide substantial help for the diagnosis of aortic dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seven完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
蔡夜安完成签到,获得积分10
2秒前
地平发布了新的文献求助10
3秒前
隐形曼青应助还能计划采纳,获得10
3秒前
serendipity发布了新的文献求助10
3秒前
科研通AI5应助阔达磬采纳,获得10
3秒前
蜡笔小鑫发布了新的文献求助10
4秒前
4秒前
该饮茶了发布了新的文献求助20
4秒前
6秒前
yunli发布了新的文献求助10
6秒前
jwxstc发布了新的文献求助10
6秒前
zzh完成签到,获得积分10
6秒前
zz发布了新的文献求助10
6秒前
fff发布了新的文献求助20
7秒前
7秒前
8秒前
顾矜应助隐形萃采纳,获得10
8秒前
12321234发布了新的文献求助20
8秒前
端庄以冬完成签到,获得积分10
8秒前
ggggg完成签到,获得积分10
9秒前
9秒前
zzh发布了新的文献求助10
9秒前
蒙塔啦完成签到,获得积分10
11秒前
12秒前
abao发布了新的文献求助10
12秒前
12秒前
12秒前
King16发布了新的文献求助10
13秒前
弋甫完成签到,获得积分10
14秒前
蒙塔啦发布了新的文献求助10
14秒前
ekm7k完成签到,获得积分10
15秒前
Lucas应助该饮茶了采纳,获得10
16秒前
jwxstc完成签到,获得积分20
17秒前
安安发布了新的文献求助10
17秒前
轨迹发布了新的文献求助30
17秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728783
求助须知:如何正确求助?哪些是违规求助? 3273829
关于积分的说明 9983551
捐赠科研通 2989157
什么是DOI,文献DOI怎么找? 1640194
邀请新用户注册赠送积分活动 779103
科研通“疑难数据库(出版商)”最低求助积分说明 747961