已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of cascaded GAN based on CT scan in the diagnosis of aortic dissection

主动脉夹层 医学 鉴别器 放射科 人工智能 计算机科学 主动脉 心脏病学 电信 探测器
作者
Hongwei Chen,Sunang Yan,Mingxing Xie,Jianlong Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:226: 107130-107130 被引量:13
标识
DOI:10.1016/j.cmpb.2022.107130
摘要

Currently, Computed Tomography Angiography (CTA) is the most commonly used clinical method for the diagnosis of aortic dissection, which is much better than plain CT. However, CTA examination has some disadvantages such as time-consuming image processing, complicated procedure and injection of developer. CT plain scanning is widely used in the early diagnosis of arterial dissection because of its convenience, speed and popularity. In order not to delay the optimal diagnosis and treatment time of patients, we use deep learning technology and network model to synthesize plain CT images into CTA images. Patients can be timely professional related departments of clinical diagnosis and treatment, and reduce the rate of missed diagnosis. In this paper, we propose a CTA image synthesis technique for cardiac aortic dissection based on the cascaded generative adjunctive network model.Firstly, we registered CT images, and then used nnU-Net segmentation network model to obtain CT and CTA paired images containing only the aorta. Then we proposed a CTA image synthesis method for aortic dissection based on cascaded generative adversarial. The core idea is to build a cascade generator and double discriminator network based on DCT channel attention mechanism to further enhance the synthesis effect of CTA.The model is trained and tested on CT plain scan and CTA image data set of aortic dissection. The results show that the proposed model achieves good results in CTA image synthesis. In the CT data set, the nnU-Net model improves 8.63% and reduces 10.87mm errors in the key index DSC and HD, respectively, compared with the benchmark model U-Net. In CTA data set, nnU-Net model improves 10.27% and reduces 6.56mm error in key index DSC and HD, respectively, compared with benchmark model U-Net. In the synthesis task, the cascaded generative adm network is superior to Pix2pix and Pix2pixHD network models in both PSNR and SSIM, which proves that our proposed model has significant advantages.This study provides new possibilities for CTA image synthesis of aortic dissection, and improves the accuracy and efficiency of diagnosis, and hopes to provide substantial help for the diagnosis of aortic dissection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待盼雁完成签到,获得积分10
2秒前
完美世界应助pho采纳,获得10
5秒前
偷看星星完成签到 ,获得积分10
5秒前
7秒前
7秒前
freedom完成签到,获得积分20
8秒前
yu完成签到 ,获得积分10
8秒前
muni完成签到,获得积分10
8秒前
浮光应助7Ham采纳,获得20
10秒前
youyou发布了新的文献求助10
11秒前
归海梦岚完成签到,获得积分0
12秒前
tleeny发布了新的文献求助10
12秒前
昏睡的科研小白完成签到 ,获得积分10
14秒前
寂寞的尔丝完成签到 ,获得积分10
15秒前
16秒前
科研通AI2S应助Uranus采纳,获得10
19秒前
安详的亦丝完成签到 ,获得积分10
20秒前
张雨露发布了新的文献求助10
21秒前
23秒前
24秒前
丸子完成签到,获得积分10
24秒前
完美世界应助chruse采纳,获得10
25秒前
25秒前
小马甲应助Wish采纳,获得10
26秒前
年轻时光发布了新的文献求助10
26秒前
28秒前
28秒前
29秒前
fei979发布了新的文献求助10
30秒前
lalkiii完成签到,获得积分10
30秒前
felix发布了新的文献求助10
30秒前
梦希陌发布了新的文献求助10
34秒前
展锋发布了新的文献求助10
34秒前
研友_LMBPXn发布了新的文献求助10
35秒前
36秒前
微笑绿蕊发布了新的文献求助10
36秒前
科研通AI2S应助xw采纳,获得10
39秒前
MR关闭了MR文献求助
40秒前
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5815057
求助须知:如何正确求助?哪些是违规求助? 5922985
关于积分的说明 15542066
捐赠科研通 4937805
什么是DOI,文献DOI怎么找? 2659360
邀请新用户注册赠送积分活动 1605662
关于科研通互助平台的介绍 1560236