A Voxel-Based End Milling Simulation Method to Analyze the Elastic Deformation of a Workpiece

体素 刚度 机械加工 有限元法 变形(气象学) 偏转(物理) 计算机科学 材料科学 结构工程 人工智能 工程类 复合材料 光学 物理 冶金
作者
Kazuki Kaneko,Jun Shimizu,Keiichi SHIRASE
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASME International]
卷期号:145 (1) 被引量:3
标识
DOI:10.1115/1.4055794
摘要

Abstract A new method to analyze the elastic deformation of a workpiece during end milling is proposed. One of the advantages of this method is the possibility of easily combining it with a voxel-based milling simulation, which is often used to predict cutting force, and to predict machining error due to workpiece deflection. With this method, the workpiece is discretely represented by voxels connected to their neighboring voxels with beam elements. Although the finite element method (FEM) is generally used for deformation analysis, it requires substantial time to analyze the deformation. In contrast, the proposed method does not require much time for remeshing, as the workpiece shape change is represented by removing voxels, and the stiffness matrix can be easily updated from the stiffness matrix obtained before the shape change. By conducting the preliminary analysis using coarse voxels and estimating the initial value of the solution, our method also reduces the number of iterations required to determine the deformation. The proposed method was integrated into the voxel-based cutting force prediction method in order to simulate the workpiece deformation caused by the cutting force. Therefore, the cutting force and the resulting workpiece deflection are seamlessly predicted using a voxel model. The results of a verification experiment showed that the analyzed workpiece deformation was in rough agreement with the measured deformation. Our future work is to predict the machining error induced by the workpiece elastic deformation based on this method and to integrate it with our previous work on the prediction of machining error induced by elastic deformation of the tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Hiihaa采纳,获得10
刚刚
liu发布了新的文献求助30
刚刚
谢之遥完成签到,获得积分10
1秒前
jkq发布了新的文献求助10
2秒前
希望天下0贩的0应助penguin采纳,获得10
3秒前
包容的忆灵完成签到 ,获得积分10
4秒前
席潮发布了新的文献求助10
6秒前
fmx完成签到,获得积分10
8秒前
9秒前
9秒前
聪明摩托完成签到,获得积分10
10秒前
大帅完成签到 ,获得积分10
13秒前
14秒前
14秒前
轻松子轩发布了新的文献求助10
15秒前
Ail完成签到,获得积分10
15秒前
wanci应助壮观静柏采纳,获得10
18秒前
高高的山兰完成签到 ,获得积分10
18秒前
席潮完成签到,获得积分10
20秒前
西乡塘塘主完成签到,获得积分10
22秒前
踏实的白羊完成签到,获得积分10
23秒前
23秒前
Qi完成签到 ,获得积分10
27秒前
30秒前
桐桐完成签到,获得积分0
33秒前
小事完成签到 ,获得积分10
34秒前
壮观静柏发布了新的文献求助10
34秒前
随机子应助酶没美镁采纳,获得10
35秒前
情怀应助小雨滴采纳,获得10
37秒前
40秒前
41秒前
41秒前
浮三白完成签到,获得积分10
41秒前
科研通AI2S应助Jenlisa采纳,获得10
44秒前
科研通AI2S应助lwa采纳,获得10
44秒前
旅顺口老李完成签到 ,获得积分10
45秒前
霸气的亿先完成签到 ,获得积分10
45秒前
45秒前
小文子发布了新的文献求助10
46秒前
47秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388