亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NerveFormer: A Cross-Sample Aggregation Network for Corneal Nerve Segmentation

计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 计算机视觉
作者
Jiayu Chen,Lei Mou,Shaodong Ma,Huazhu Fu,Lijun Guo,Yalin Zheng,Jiong Zhang,Yitian Zhao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 79-88
标识
DOI:10.1007/978-3-031-16440-8_8
摘要

AbstractThe segmentation of corneal nerves in corneal confocal microscopy (CCM) is of great to the quantification of clinical parameters in the diagnosis of eye-related diseases and systematic diseases. Existing works mainly use convolutional neural networks to improve the segmentation accuracy, while further improvement is needed to mitigate the nerve discontinuity and noise interference. In this paper, we propose a novel corneal nerve segmentation network, named NerveFormer, to resolve the above-mentioned limitations. The proposed NerveFormer includes a Deformable and External Attention Module (DEAM), which exploits the Transformer-based Deformable Attention (TDA) and External Attention (TEA) mechanisms. TDA is introduced to explore the local internal nerve features in a single CCM, while TEA is proposed to model global external nerve features across different CCM images. Specifically, to efficiently fuse the internal and external nerve features, TDA obtains the query set required by TEA, thereby strengthening the characterization ability of TEA. Therefore, the proposed model aggregates the learned features from both single-sample and cross-sample, allowing for better extraction of corneal nerve features across the whole dataset. Experimental results on two public CCM datasets show that our proposed method achieves state-of-the-art performance, especially in terms of segmentation continuity and noise discrimination.KeywordsCorneal nerve segmentationTransformerCross-sample

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
6秒前
tlx发布了新的文献求助10
10秒前
xmg完成签到,获得积分20
14秒前
共享精神应助一周采纳,获得10
14秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
gexzygg应助科研通管家采纳,获得10
17秒前
shhoing应助科研通管家采纳,获得10
17秒前
17秒前
qpp完成签到,获得积分10
17秒前
beiwei完成签到 ,获得积分10
19秒前
19秒前
葡萄发布了新的文献求助10
23秒前
28秒前
情怀应助tlx采纳,获得30
31秒前
小蘑菇应助Qiaoguliang采纳,获得10
31秒前
31秒前
36秒前
葡萄完成签到,获得积分10
37秒前
bgim发布了新的文献求助10
40秒前
47秒前
49秒前
49秒前
一周发布了新的文献求助10
52秒前
52秒前
Qiaoguliang发布了新的文献求助10
53秒前
56秒前
lyb1853关注了科研通微信公众号
57秒前
波恰发布了新的文献求助10
58秒前
飞快的孱发布了新的文献求助10
59秒前
1分钟前
三三完成签到 ,获得积分0
1分钟前
1分钟前
horizon发布了新的文献求助10
1分钟前
1分钟前
1分钟前
一周完成签到,获得积分10
1分钟前
科研通AI6应助波恰采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549098
求助须知:如何正确求助?哪些是违规求助? 4634430
关于积分的说明 14634667
捐赠科研通 4575878
什么是DOI,文献DOI怎么找? 2509325
邀请新用户注册赠送积分活动 1485283
关于科研通互助平台的介绍 1456402