Semantic Meta-Path Enhanced Global and Local Topology Learning for lncRNA-Disease Association Prediction

成对比较 计算机科学 网络拓扑 图形 拓扑(电路) 语义学(计算机科学) 路径(计算) 编码 理论计算机科学 人工智能 数学 生物 计算机网络 组合数学 基因 程序设计语言 生物化学
作者
Ping Xuan,Yue Zhao,Hui Cui,Linyun Zhan,Qiangguo Jin,Tiangang Zhang,Toshiya Nakaguchi
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1480-1491 被引量:9
标识
DOI:10.1109/tcbb.2022.3209571
摘要

Since abnormal expression of long non-coding RNAs (lncRNAs) is associated with various human diseases, identifying disease-related lncRNAs helps reveal the pathogenesis of diseases. Existing methods for lncRNA-disease association prediction mainly focus on multi-sourced data related to lncRNAs and diseases. The rich semantic information of meta-paths, composed of multiple kinds of connections between lncRNA and disease nodes, is neglected. We propose a new prediction method, MGLDA, to encode and integrate the semantics of multiple meta-paths, the global topology of heterogeneous graph, and pairwise attributes of lncRNA and disease nodes. First, a tri-layer heterogeneous graph is constructed to associate multi-sourced data across the lncRNA, disease, and miRNA nodes. Afterwards, we establish multiple meta-paths connecting the lncRNA and disease nodes to derive and denote various semantics. Each meta-path contains its specific semantics formulated by an embedding strategy, and each embedding covers local topology formed by the diverse semantic connections among the lncRNA, disease, and miRNA nodes. We construct multiple graph convolutional autoencoders (GCA) with topology-level attention to learn global and multiple local topologies from the tri-layer graph and each meta-path, respectively. The topology-level attention mechanism can learn the importance of various global and local topologies for adaptive pairwise topology fusion. Finally, a convolutional autoencoder learns the attribute representations of lncRNA-disease pairs, which integrates the learnt detailed and representative pairwise features. Experimental results show that MGLDA outperforms other state-of-the-art prediction methods in comparison and retrieves more real lncRNA-disease associations in the top-ranked candidates. The ablation study also demonstrates the important contributions of the local and global topology learning, and pairwise attribute learning. Case studies on three diseases further demonstrate MGLDA's ability to identify potential disease-related lncRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮问兰完成签到 ,获得积分10
1秒前
肥肉叉烧发布了新的文献求助10
3秒前
搬运工完成签到,获得积分10
3秒前
科目三应助狂野绿竹采纳,获得10
5秒前
5秒前
6秒前
ET发布了新的文献求助10
9秒前
热心雪一完成签到 ,获得积分10
11秒前
林林完成签到,获得积分10
12秒前
12秒前
CipherSage应助肥肉叉烧采纳,获得10
13秒前
yeyeyeyeyeyeyeye完成签到,获得积分10
19秒前
Moonboss完成签到 ,获得积分10
20秒前
跟屁虫完成签到,获得积分10
22秒前
23秒前
25秒前
25秒前
景景好完成签到,获得积分10
25秒前
Euphoria完成签到 ,获得积分10
27秒前
28秒前
小熊座a完成签到 ,获得积分10
30秒前
AiX-zzzzz发布了新的文献求助10
31秒前
32秒前
tfr06完成签到,获得积分10
35秒前
37秒前
38秒前
踏实滑板完成签到 ,获得积分20
39秒前
Rio完成签到,获得积分10
41秒前
44秒前
ii完成签到 ,获得积分10
44秒前
45秒前
Ricardo完成签到 ,获得积分10
46秒前
ie发布了新的文献求助10
49秒前
56秒前
陈曦完成签到,获得积分10
57秒前
顾矜应助叩白采纳,获得10
58秒前
共享精神应助nanomolar采纳,获得10
58秒前
Ava应助無羁采纳,获得10
1分钟前
ainikiki完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165538
求助须知:如何正确求助?哪些是违规求助? 2816691
关于积分的说明 7913299
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388