Trajectory planning based on spatio-temporal reachable set considering dynamic probabilistic risk

计算机科学 弹道 灵活性(工程) 概率逻辑 集合(抽象数据类型) 运动规划 动态规划 任务(项目管理) 数学优化 人工智能 算法 机器人 数学 物理 统计 经济 管理 程序设计语言 天文
作者
Xinkang Zhang,Bo Yang,Xiaofei Pei,Songxin Lu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106291-106291 被引量:2
标识
DOI:10.1016/j.engappai.2023.106291
摘要

Trajectory planning in complex traffic situations has always been a challenging task for intelligent vehicles. Comparing to the decoupling method, the spatio-temporal trajectory planning method owns more flexibility and reasonability due to the combination of lateral and longitudinal motion. However, it still has some shortcomings, such as unreasonable risk assessment, high computational complexity and heavy dependence on other models for generating target points. Therefore, a novel spatio-temporal based trajectory planning framework considering probability risk is proposed in this paper. Firstly, a GNN-LSTM based on trajectory prediction algorithm is presented in terms of risk analysis, and particularly the predicted trajectories and the vehicle dynamic model are combined for risk assessment. Secondly, a rough-fine hierarchical planning framework based on reachable set and dynamic programming is proposed. In this framework, the reachable set is taken as spatio-temporal node to reduce the computational costs and dynamic programming can help the algorithm to eliminate the dependence of other models in evaluating target points. Finally, a traffic scenario with random interactive obstacles is built and tested on a HIL platform. The experimental results show that compared with other typical algorithms, the average driving efficiency, driving risk behavior and driving comfort of the vehicle are significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aq22完成签到 ,获得积分10
刚刚
研友_Lw7MKL完成签到,获得积分10
1秒前
小马甲应助不安的紫翠采纳,获得10
2秒前
2秒前
5秒前
6秒前
羊羊羊发布了新的文献求助10
6秒前
6秒前
iNk应助稳重的安萱采纳,获得10
6秒前
明理宛秋完成签到 ,获得积分10
10秒前
Muhammad发布了新的文献求助10
12秒前
12秒前
12秒前
桐桐应助勤奋盼晴采纳,获得10
13秒前
羊羊羊完成签到,获得积分10
14秒前
Hello应助zhangkexin采纳,获得10
14秒前
Owen应助稳重的安萱采纳,获得30
16秒前
研友_ngX12Z发布了新的文献求助10
16秒前
zhq完成签到,获得积分10
16秒前
隐形曼青应助congenialboy采纳,获得10
17秒前
Hello应助congenialboy采纳,获得10
17秒前
深情安青应助congenialboy采纳,获得30
17秒前
科研通AI2S应助zhangfuchao采纳,获得10
17秒前
18秒前
20秒前
20秒前
乂贰ZERO叁发布了新的文献求助10
21秒前
clyhg发布了新的文献求助20
22秒前
勤奋盼晴给勤奋盼晴的求助进行了留言
23秒前
lily完成签到,获得积分10
25秒前
25秒前
25秒前
华仔应助稳重的安萱采纳,获得10
25秒前
bkagyin应助淡定落雁采纳,获得10
27秒前
Nothing应助安宇采纳,获得10
27秒前
如意枫叶发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
lily发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989645
求助须知:如何正确求助?哪些是违规求助? 3531805
关于积分的说明 11254983
捐赠科研通 3270372
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176