Trajectory planning based on spatio-temporal reachable set considering dynamic probabilistic risk

计算机科学 弹道 灵活性(工程) 概率逻辑 集合(抽象数据类型) 运动规划 动态规划 任务(项目管理) 数学优化 人工智能 算法 机器人 数学 物理 统计 经济 管理 程序设计语言 天文
作者
Xinkang Zhang,Bo Yang,Xiaofei Pei,Songxin Lu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:123: 106291-106291 被引量:2
标识
DOI:10.1016/j.engappai.2023.106291
摘要

Trajectory planning in complex traffic situations has always been a challenging task for intelligent vehicles. Comparing to the decoupling method, the spatio-temporal trajectory planning method owns more flexibility and reasonability due to the combination of lateral and longitudinal motion. However, it still has some shortcomings, such as unreasonable risk assessment, high computational complexity and heavy dependence on other models for generating target points. Therefore, a novel spatio-temporal based trajectory planning framework considering probability risk is proposed in this paper. Firstly, a GNN-LSTM based on trajectory prediction algorithm is presented in terms of risk analysis, and particularly the predicted trajectories and the vehicle dynamic model are combined for risk assessment. Secondly, a rough-fine hierarchical planning framework based on reachable set and dynamic programming is proposed. In this framework, the reachable set is taken as spatio-temporal node to reduce the computational costs and dynamic programming can help the algorithm to eliminate the dependence of other models in evaluating target points. Finally, a traffic scenario with random interactive obstacles is built and tested on a HIL platform. The experimental results show that compared with other typical algorithms, the average driving efficiency, driving risk behavior and driving comfort of the vehicle are significantly improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Vizz采纳,获得10
1秒前
知非发布了新的文献求助10
2秒前
浮游应助犹豫小蚂蚁采纳,获得10
2秒前
guojingjing发布了新的文献求助10
4秒前
4秒前
4秒前
Yun yun发布了新的文献求助10
5秒前
小丑发布了新的文献求助10
6秒前
慢慢发布了新的文献求助10
6秒前
changping应助蓝风铃采纳,获得10
7秒前
情怀应助橙子采纳,获得10
8秒前
ZhouQixing发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
syr完成签到,获得积分10
10秒前
abcd_1067发布了新的文献求助10
10秒前
搜集达人应助知非采纳,获得10
12秒前
jackten发布了新的文献求助10
12秒前
12秒前
123zyx发布了新的文献求助10
12秒前
13秒前
Vizz发布了新的文献求助10
14秒前
14秒前
15秒前
wanci应助亚铁氰化钾采纳,获得10
15秒前
yongjiang完成签到,获得积分10
16秒前
高高亦竹发布了新的文献求助30
16秒前
KyrieIrving关注了科研通微信公众号
16秒前
NexusExplorer应助甜甜斓采纳,获得10
17秒前
搜集达人应助che采纳,获得10
18秒前
科研通AI5应助慢慢采纳,获得10
18秒前
18秒前
balabala完成签到,获得积分20
19秒前
雷雷发布了新的文献求助10
19秒前
19秒前
烟花应助puppet采纳,获得10
20秒前
稗子发布了新的文献求助10
21秒前
小蘑菇应助妮子采纳,获得10
22秒前
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228