A viscoplastic-coupled phase field modelling for mechanical behaviors of thermal barrier coating system with randomly microporous structures

热障涂层 材料科学 粘塑性 复合材料 有限元法 微观结构 散裂 多孔性 涂层 微型多孔材料 结构工程 本构方程 工程类 量子力学 物理 中子
作者
Jianan Song,Yongsheng Fan,Jia Huang,Wei‐Qing Huang
出处
期刊:Engineering Fracture Mechanics [Elsevier]
卷期号:284: 109268-109268 被引量:5
标识
DOI:10.1016/j.engfracmech.2023.109268
摘要

In this study, we have introduced a novel viscoplastic-coupled phase field approach to simulate the deformation and failure progression of thermal barrier coating systems (TBCs) with disordered microporous structures. The theory has been incorporated in the finite element method, for the first time, to characterize crack initiation and propagation in TBCs, considering both time-dependent deformations and tension–compression asymmetry mechanical behaviors. Furthermore, we have proposed a numerical framework for failure modeling of porous solids, which includes the quantitative characterization of microstructures, the parametric finite element modeling, and the visualization of calculation outcomes. We have performed several simulations of different microstructures, which have been compared against experimental data, demonstrating the predictive capabilities of our method in intricate structures. Our findings have revealed that cracks tend to emerge from nearby micropores, and an increase in porosity can lead to earlier crack initiation and a decrease in TBCs strength. Furthermore, micropores in the same horizontal line tend to cause cracks to propagate more easily, resulting in a substantial reduction in strength. For TBCs exposed to cyclic loading and thermal growth oxidation (TGO) growth stress, interfacial cracks are primarily caused by the deflection of cracks in the top coat (TC) layer. The method presented in this study offers a fresh perspective on the failure mechanism of solids with complex microstructures and contributes to the mechanical improvement of TBCs based on structural considerations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lucas应助荡乎宇宙如虚舟采纳,获得30
1秒前
震动的冷珍完成签到,获得积分10
2秒前
乐观大雁发布了新的文献求助10
2秒前
白方明发布了新的文献求助10
3秒前
frank发布了新的文献求助10
3秒前
思源应助Xx采纳,获得30
4秒前
5秒前
罗拉发布了新的文献求助10
6秒前
科研通AI5应助哭泣的赛凤采纳,获得30
7秒前
8秒前
8秒前
9秒前
morena发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
HHXYY完成签到 ,获得积分10
11秒前
11秒前
wos发布了新的文献求助30
12秒前
fishbig发布了新的文献求助30
13秒前
frank完成签到,获得积分10
13秒前
高贵黄蜂发布了新的文献求助30
14秒前
zhoahai发布了新的文献求助10
14秒前
今天只做一件事应助龙龙采纳,获得10
14秒前
老温完成签到,获得积分10
16秒前
tranphucthinh完成签到,获得积分10
16秒前
一八四完成签到,获得积分10
16秒前
善良的远锋完成签到,获得积分10
17秒前
彭于晏应助Xzmmmm采纳,获得10
17秒前
17秒前
妖孽的二狗完成签到 ,获得积分10
18秒前
和谐的雨真完成签到,获得积分20
20秒前
20秒前
桃桃完成签到,获得积分10
21秒前
专注篮球完成签到,获得积分10
22秒前
22秒前
22秒前
英姑应助哎哟很烦采纳,获得10
23秒前
刘清河完成签到 ,获得积分10
23秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483245
求助须知:如何正确求助?哪些是违规求助? 3072633
关于积分的说明 9127379
捐赠科研通 2764270
什么是DOI,文献DOI怎么找? 1517034
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700770