Machine Learning for Design of Phosphorene Nanozyme Sensor and Its Intelligent Analysis of Clenbuterol in Animal-Derived Agro-Products

支持向量机 磷烯 人工神经网络 材料科学 机器学习 人工智能 计算机科学 生物系统 纳米技术 单层 生物
作者
Yao Xiong,Ruimei Wu,Lulu Xu,Ying Zhong,Ge Yu,Yang Wen,Hang Yao,Weiqi Zhou,Shirong Ai
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:170 (4): 047505-047505 被引量:1
标识
DOI:10.1149/1945-7111/acc9e1
摘要

Extraordinary electronic performance and unique structural characteristic of black phosphorene (BP) often is used as electrode modified materials in electrochemical sensors. In this paper, a machine learning (ML) strategy for phosphorene nanozyme sensor and its the intelligent of clenbuterol (CLB) in pork and pig serum samples is prepared. The silver nanoparticles decorate BP to prevent oxidative degradation of BP surface and further hybridize with multi-walled carbon nanotubes (MWCNTs) composites containing nafion (Nf) treated with isopropanol (IP) to improve environmental stability and electrocatalytic capacity of BP. Back-propagation artificial neural network (BP-ANN) model combined with genetic algorithm (GA) is employed to optimize sensor parameters such as BP concentrations, MWCNTs concentrations and ratio of V Nf :V IP , and compared with orthogonal experimental design (OED). Least square support vector machine, radial basis function and extreme learning machine are implemented to establish quantitative analysis model for CLB. The results showed that the CLB response current of BP sensor by BP-ANN-GA was improved 9.02% over OED method. Compared with the traditional linear regression, three models displayed better predictive performance, and LS-SVM was the best with the R 2 , RMSE and MAE and RPD of 0.9977, 0.0303, 0.0225, and 18.74, respectively. The average recoveries of CLB in pork and pig serum was 98.66% ∼ 101.67%, and its relative standard deviations was 0.19% ∼ 0.84%, indicating that electrochemical sensor using machine learning for intelligent analysis of CLB in animal-derived agro-products products was both feasible and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵清啵完成签到,获得积分10
1秒前
1秒前
莉莉发布了新的文献求助10
1秒前
2秒前
NexusExplorer应助平常的雁凡采纳,获得10
2秒前
Silverexile完成签到,获得积分10
3秒前
3秒前
唠叨的曼易完成签到,获得积分10
3秒前
Ymj关闭了Ymj文献求助
4秒前
木木雨完成签到,获得积分10
4秒前
4秒前
Harlotte发布了新的文献求助20
4秒前
LINxu发布了新的文献求助10
4秒前
今后应助加油采纳,获得10
4秒前
moonlight发布了新的文献求助10
5秒前
IMkily完成签到,获得积分10
6秒前
深情安青应助sunzhiyu233采纳,获得10
6秒前
6秒前
6秒前
sss发布了新的文献求助20
7秒前
氨基酸发布了新的文献求助30
8秒前
8秒前
8秒前
白菜发布了新的文献求助10
8秒前
文献查找完成签到,获得积分10
9秒前
浅色墨水完成签到,获得积分10
9秒前
研友_VZG7GZ应助xxx采纳,获得10
9秒前
夙杨完成签到,获得积分10
10秒前
yKkkkkk完成签到,获得积分10
10秒前
烂漫驳完成签到,获得积分10
10秒前
JunJun完成签到 ,获得积分10
10秒前
10秒前
喜悦中道应助jie采纳,获得10
10秒前
pursuingx完成签到,获得积分10
11秒前
结实灵完成签到,获得积分10
11秒前
机灵猕猴桃完成签到,获得积分10
11秒前
标致小伙发布了新的文献求助30
12秒前
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759