Machine Learning for Design of Phosphorene Nanozyme Sensor and Its Intelligent Analysis of Clenbuterol in Animal-Derived Agro-Products

支持向量机 磷烯 人工神经网络 材料科学 机器学习 人工智能 计算机科学 生物系统 纳米技术 生物 单层
作者
Yao Xiong,Ruimei Wu,Lulu Xu,Ying Zhong,Ge Yu,Yang Wen,Hang Yao,Weiqi Zhou,Shirong Ai
出处
期刊:Journal of The Electrochemical Society [The Electrochemical Society]
卷期号:170 (4): 047505-047505 被引量:1
标识
DOI:10.1149/1945-7111/acc9e1
摘要

Extraordinary electronic performance and unique structural characteristic of black phosphorene (BP) often is used as electrode modified materials in electrochemical sensors. In this paper, a machine learning (ML) strategy for phosphorene nanozyme sensor and its the intelligent of clenbuterol (CLB) in pork and pig serum samples is prepared. The silver nanoparticles decorate BP to prevent oxidative degradation of BP surface and further hybridize with multi-walled carbon nanotubes (MWCNTs) composites containing nafion (Nf) treated with isopropanol (IP) to improve environmental stability and electrocatalytic capacity of BP. Back-propagation artificial neural network (BP-ANN) model combined with genetic algorithm (GA) is employed to optimize sensor parameters such as BP concentrations, MWCNTs concentrations and ratio of V Nf :V IP , and compared with orthogonal experimental design (OED). Least square support vector machine, radial basis function and extreme learning machine are implemented to establish quantitative analysis model for CLB. The results showed that the CLB response current of BP sensor by BP-ANN-GA was improved 9.02% over OED method. Compared with the traditional linear regression, three models displayed better predictive performance, and LS-SVM was the best with the R 2 , RMSE and MAE and RPD of 0.9977, 0.0303, 0.0225, and 18.74, respectively. The average recoveries of CLB in pork and pig serum was 98.66% ∼ 101.67%, and its relative standard deviations was 0.19% ∼ 0.84%, indicating that electrochemical sensor using machine learning for intelligent analysis of CLB in animal-derived agro-products products was both feasible and practical.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
没有你沉发布了新的文献求助10
4秒前
4秒前
4秒前
柒玉染完成签到,获得积分10
5秒前
斯文败类应助司徒代云采纳,获得10
5秒前
optimist发布了新的文献求助30
8秒前
柒玉染发布了新的文献求助10
9秒前
司徒代云完成签到,获得积分10
17秒前
19秒前
诗错亦染完成签到,获得积分10
20秒前
20秒前
tl完成签到,获得积分20
20秒前
21秒前
zzz完成签到 ,获得积分10
21秒前
kourosz完成签到,获得积分20
23秒前
DDL发布了新的文献求助10
24秒前
Bonobonoya发布了新的文献求助10
25秒前
郝宝真发布了新的文献求助10
25秒前
Edward完成签到 ,获得积分10
25秒前
Aiden完成签到,获得积分10
26秒前
翛然生晓凉完成签到,获得积分10
26秒前
卓若之完成签到 ,获得积分10
31秒前
31秒前
yanna应助翛然生晓凉采纳,获得10
33秒前
waayu完成签到 ,获得积分10
33秒前
Bonobonoya完成签到,获得积分10
35秒前
JamesPei应助chen采纳,获得10
36秒前
微笑高山完成签到 ,获得积分10
36秒前
36秒前
刘哈哈完成签到 ,获得积分10
37秒前
孙远欣发布了新的文献求助10
38秒前
稳重凤凰完成签到 ,获得积分10
42秒前
阔达小懒虫完成签到,获得积分20
44秒前
honoruru完成签到,获得积分10
45秒前
CipherSage应助灵儿采纳,获得10
50秒前
51秒前
小贝壳要快乐吖完成签到,获得积分10
53秒前
冷静乌发布了新的文献求助10
53秒前
NexusExplorer应助奥沙利楠采纳,获得10
54秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165510
求助须知:如何正确求助?哪些是违规求助? 2816568
关于积分的说明 7913181
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388