Data-Driven Quantitative Structure–Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure

致癌物 计算生物学 化学 环境化学 生物 生物化学
作者
Elena Chung,Daniel P. Russo,Heather L. Ciallella,Yutang Wang,Min Wu,Lauren M. Aleksunes,Hao Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (16): 6573-6588 被引量:14
标识
DOI:10.1021/acs.est.3c00648
摘要

Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure-activity relationship (QSAR) models. However, conventional QSAR models have limited training data, leading to low predictivity for new compounds. We developed a data-driven modeling approach for constructing carcinogenicity-related models and used these models to identify potential new human carcinogens. To this goal, we used a probe carcinogen dataset from the US Environmental Protection Agency's Integrated Risk Information System (IRIS) to identify relevant PubChem bioassays. Responses of 25 PubChem assays were significantly relevant to carcinogenicity. Eight assays inferred carcinogenicity predictivity and were selected for QSAR model training. Using 5 machine learning algorithms and 3 types of chemical fingerprints, 15 QSAR models were developed for each PubChem assay dataset. These models showed acceptable predictivity during 5-fold cross-validation (average CCR = 0.71). Using our QSAR models, we can correctly predict and rank 342 IRIS compounds' carcinogenic potentials (PPV = 0.72). The models predicted potential new carcinogens, which were validated by a literature search. This study portends an automated technique that can be applied to prioritize potential toxicants using validated QSAR models based on extensive training sets from public data resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贤惠的枫完成签到 ,获得积分10
1秒前
1秒前
wang完成签到 ,获得积分10
1秒前
菜穗子完成签到,获得积分10
1秒前
cooling给cooling的求助进行了留言
2秒前
彭于晏应助@@@采纳,获得10
3秒前
paipai完成签到 ,获得积分10
3秒前
4秒前
滟滟完成签到,获得积分10
4秒前
Wjc完成签到,获得积分20
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
脑洞疼应助lunhui6453采纳,获得10
6秒前
小黄完成签到 ,获得积分10
8秒前
mochi发布了新的文献求助10
8秒前
TWOTP完成签到,获得积分10
8秒前
QDF发布了新的文献求助10
8秒前
丘比特应助在南方看北方采纳,获得10
8秒前
9秒前
9秒前
DryDry完成签到,获得积分10
11秒前
崔小乐给崔小乐的求助进行了留言
11秒前
11秒前
11秒前
别理我完成签到,获得积分20
12秒前
暮霭沉沉应助鱿鱼采纳,获得50
12秒前
Kelly完成签到,获得积分10
12秒前
yuon完成签到,获得积分10
12秒前
13秒前
13秒前
伞下铭发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
欣xin完成签到,获得积分20
16秒前
螃蟹完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
@@@发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952