Data-Driven Quantitative Structure–Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure

致癌物 计算生物学 化学 环境化学 生物 生物化学
作者
Elena Chung,Daniel P. Russo,Heather L. Ciallella,Yutang Wang,Min Wu,Lauren M. Aleksunes,Hao Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (16): 6573-6588 被引量:14
标识
DOI:10.1021/acs.est.3c00648
摘要

Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure-activity relationship (QSAR) models. However, conventional QSAR models have limited training data, leading to low predictivity for new compounds. We developed a data-driven modeling approach for constructing carcinogenicity-related models and used these models to identify potential new human carcinogens. To this goal, we used a probe carcinogen dataset from the US Environmental Protection Agency's Integrated Risk Information System (IRIS) to identify relevant PubChem bioassays. Responses of 25 PubChem assays were significantly relevant to carcinogenicity. Eight assays inferred carcinogenicity predictivity and were selected for QSAR model training. Using 5 machine learning algorithms and 3 types of chemical fingerprints, 15 QSAR models were developed for each PubChem assay dataset. These models showed acceptable predictivity during 5-fold cross-validation (average CCR = 0.71). Using our QSAR models, we can correctly predict and rank 342 IRIS compounds' carcinogenic potentials (PPV = 0.72). The models predicted potential new carcinogens, which were validated by a literature search. This study portends an automated technique that can be applied to prioritize potential toxicants using validated QSAR models based on extensive training sets from public data resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenying完成签到 ,获得积分0
2秒前
3秒前
默问应助玄轩小悟风采纳,获得20
5秒前
谨慎的大门完成签到 ,获得积分10
5秒前
xiaoxixixier完成签到 ,获得积分10
5秒前
CMD完成签到 ,获得积分10
6秒前
生命科学的第一推动力完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
追逐梦想的打工人完成签到,获得积分10
10秒前
Dsunflower完成签到 ,获得积分10
11秒前
12秒前
白江虎完成签到,获得积分10
13秒前
无极微光应助白华苍松采纳,获得20
13秒前
槿一完成签到 ,获得积分10
14秒前
14秒前
lili完成签到,获得积分10
14秒前
hdc12138完成签到,获得积分10
16秒前
Legend发布了新的文献求助10
17秒前
枫叶完成签到,获得积分10
17秒前
荣荣完成签到,获得积分10
18秒前
Anna完成签到 ,获得积分10
18秒前
小事完成签到 ,获得积分10
18秒前
张三顺完成签到,获得积分10
18秒前
毕业就集采的苦命人完成签到 ,获得积分10
19秒前
缥缈的闭月完成签到,获得积分10
21秒前
瓦罐完成签到 ,获得积分10
21秒前
LiuZhaoYuan完成签到,获得积分10
22秒前
王kk完成签到 ,获得积分10
23秒前
握瑾怀瑜完成签到 ,获得积分0
25秒前
Jackcaosky完成签到 ,获得积分10
26秒前
栗子完成签到 ,获得积分10
28秒前
allover完成签到,获得积分10
29秒前
陈砍砍完成签到 ,获得积分10
31秒前
上官若男应助Legend采纳,获得10
32秒前
杨玲完成签到 ,获得积分10
37秒前
飞快的盼易完成签到,获得积分10
38秒前
高高珩完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
Amy完成签到 ,获得积分10
41秒前
chenyunxia完成签到,获得积分10
45秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771707
捐赠科研通 4615882
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590