Data-Driven Quantitative Structure–Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure

致癌物 计算生物学 化学 环境化学 生物 生物化学
作者
Elena Chung,Daniel P. Russo,Heather L. Ciallella,Yutang Wang,Min Wu,Lauren M. Aleksunes,Hao Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (16): 6573-6588 被引量:14
标识
DOI:10.1021/acs.est.3c00648
摘要

Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure-activity relationship (QSAR) models. However, conventional QSAR models have limited training data, leading to low predictivity for new compounds. We developed a data-driven modeling approach for constructing carcinogenicity-related models and used these models to identify potential new human carcinogens. To this goal, we used a probe carcinogen dataset from the US Environmental Protection Agency's Integrated Risk Information System (IRIS) to identify relevant PubChem bioassays. Responses of 25 PubChem assays were significantly relevant to carcinogenicity. Eight assays inferred carcinogenicity predictivity and were selected for QSAR model training. Using 5 machine learning algorithms and 3 types of chemical fingerprints, 15 QSAR models were developed for each PubChem assay dataset. These models showed acceptable predictivity during 5-fold cross-validation (average CCR = 0.71). Using our QSAR models, we can correctly predict and rank 342 IRIS compounds' carcinogenic potentials (PPV = 0.72). The models predicted potential new carcinogens, which were validated by a literature search. This study portends an automated technique that can be applied to prioritize potential toxicants using validated QSAR models based on extensive training sets from public data resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐的泥猴桃完成签到 ,获得积分10
1秒前
1秒前
3秒前
科研通AI6应助SY采纳,获得10
3秒前
秀丽笑容完成签到,获得积分10
3秒前
4秒前
zz发布了新的文献求助10
4秒前
Hello应助鼻揩了转去采纳,获得10
5秒前
5秒前
斯文败类应助cassie采纳,获得10
5秒前
棕色垂耳兔完成签到 ,获得积分10
5秒前
6秒前
QQ发布了新的文献求助10
7秒前
Lucas应助健康的绮晴采纳,获得10
8秒前
8秒前
欢喜的依风完成签到,获得积分10
8秒前
丘比特应助YY采纳,获得10
10秒前
10秒前
peng完成签到,获得积分10
10秒前
11秒前
莫晓岚完成签到 ,获得积分10
11秒前
丘比特应助温芳奇采纳,获得10
11秒前
科研通AI2S应助愉快若烟采纳,获得10
13秒前
13秒前
英俊的铭应助111采纳,获得10
14秒前
14秒前
奋斗寒天发布了新的文献求助10
16秒前
VIVI完成签到,获得积分10
16秒前
酷波er应助ajjdnd采纳,获得10
17秒前
Nolan完成签到,获得积分10
17秒前
17秒前
nini完成签到,获得积分10
18秒前
QQ完成签到,获得积分20
18秒前
研友_VZG7GZ应助无忧采纳,获得10
18秒前
mvpzxx发布了新的文献求助30
19秒前
20秒前
沉静水儿发布了新的文献求助10
23秒前
刻苦的媚颜完成签到 ,获得积分10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995