Data-Driven Quantitative Structure–Activity Relationship Modeling for Human Carcinogenicity by Chronic Oral Exposure

致癌物 计算生物学 化学 环境化学 生物 生物化学
作者
Elena Chung,Daniel P. Russo,Heather L. Ciallella,Yutang Wang,Min Wu,Lauren M. Aleksunes,Hao Zhu
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (16): 6573-6588 被引量:14
标识
DOI:10.1021/acs.est.3c00648
摘要

Traditional methodologies for assessing chemical toxicity are expensive and time-consuming. Computational modeling approaches have emerged as low-cost alternatives, especially those used to develop quantitative structure-activity relationship (QSAR) models. However, conventional QSAR models have limited training data, leading to low predictivity for new compounds. We developed a data-driven modeling approach for constructing carcinogenicity-related models and used these models to identify potential new human carcinogens. To this goal, we used a probe carcinogen dataset from the US Environmental Protection Agency's Integrated Risk Information System (IRIS) to identify relevant PubChem bioassays. Responses of 25 PubChem assays were significantly relevant to carcinogenicity. Eight assays inferred carcinogenicity predictivity and were selected for QSAR model training. Using 5 machine learning algorithms and 3 types of chemical fingerprints, 15 QSAR models were developed for each PubChem assay dataset. These models showed acceptable predictivity during 5-fold cross-validation (average CCR = 0.71). Using our QSAR models, we can correctly predict and rank 342 IRIS compounds' carcinogenic potentials (PPV = 0.72). The models predicted potential new carcinogens, which were validated by a literature search. This study portends an automated technique that can be applied to prioritize potential toxicants using validated QSAR models based on extensive training sets from public data resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
冰冰完成签到,获得积分20
1秒前
无花果应助cccr采纳,获得10
1秒前
水芸完成签到,获得积分10
1秒前
2秒前
恣意完成签到 ,获得积分10
2秒前
JY完成签到,获得积分10
2秒前
畅快以菱发布了新的文献求助10
2秒前
Hello应助妙木仙采纳,获得10
2秒前
posh完成签到 ,获得积分10
2秒前
元宝麻麻关注了科研通微信公众号
3秒前
西西发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
lxz发布了新的文献求助10
4秒前
4秒前
Jasper应助糖卜里卜采纳,获得10
4秒前
FBI完成签到,获得积分10
5秒前
5秒前
南星发布了新的文献求助10
5秒前
孟婆的碗完成签到,获得积分10
5秒前
Giao完成签到,获得积分10
6秒前
6秒前
Wguan完成签到,获得积分10
6秒前
6秒前
6秒前
Philip发布了新的文献求助10
6秒前
7秒前
PFD000发布了新的文献求助20
7秒前
tomiallen完成签到,获得积分10
7秒前
酥酥发布了新的文献求助10
8秒前
KAOKAO发布了新的文献求助20
8秒前
pluto应助幸福的小面包采纳,获得10
8秒前
高高的夕阳完成签到,获得积分10
8秒前
9秒前
杰卿发布了新的文献求助10
9秒前
Giao发布了新的文献求助10
9秒前
Ava应助叶子采纳,获得10
9秒前
香蕉觅云应助冷冷子采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152