The neurophysiological basis of leadership: a machine learning approach

脑电图 心理学 神经生理学 变革型领导 认知心理学 大脑活动与冥想 唤醒 任务(项目管理) 具身认知 社会心理学 人工智能 计算机科学 神经科学 管理 经济
作者
Elena Parra,Jestine Philip,Lucía A. Carrasco‐Ribelles,Irene Alice Chicchi Giglioli,Gaetano Valenza,Javier Marín‐Morales,Mariano Alcañíz
出处
期刊:Management Decision [Emerald (MCB UP)]
卷期号:61 (6): 1465-1484 被引量:5
标识
DOI:10.1108/md-02-2022-0208
摘要

Purpose This research employed two neurophysiological techniques (electroencephalograms (EEG) and galvanic skin response (GSR)) and machine learning algorithms to capture and analyze relationship-oriented leadership (ROL) and task-oriented leadership (TOL). By grounding the study in the theoretical perspectives of transformational leadership and embodied leadership, the study draws connections to the human body's role in activating ROL and TOL styles. Design/methodology/approach EEG and GSR signals were recorded during resting state and event-related brain activity for 52 study participants. Both leadership styles were assessed independently using a standard questionnaire, and brain activity was captured by presenting subjects with emotional stimuli. Findings ROL revealed differences in EEG baseline over the frontal lobes during emotional stimuli, but no differences were found in GSR signals. TOL style, on the other hand, did not present significant differences in either EEG or GSR responses, as no biomarkers showed differences. Hence, it was concluded that EEG measures were better at recognizing brain activity associated with ROL than TOL. EEG signals were also strongest when individuals were presented with stimuli containing positive (specifically, happy) emotional content. A subsequent machine learning model developed using EEG and GSR data to recognize high/low levels of ROL and TOL predicted ROL with 81% accuracy. Originality/value The current research integrates psychophysiological techniques like EEG with machine learning to capture and analyze study variables. In doing so, the study addresses biases associated with self-reported surveys that are conventionally used in management research. This rigorous and interdisciplinary research advances leadership literature by striking a balance between neurological data and the theoretical underpinnings of transformational and embodied leadership.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
在水一方应助飞快的笑容采纳,获得10
1秒前
二尖瓣后叶应助Doctor Gao采纳,获得10
2秒前
Amai发布了新的文献求助10
4秒前
6秒前
7秒前
8秒前
9秒前
10秒前
10秒前
wangtj完成签到,获得积分10
11秒前
12秒前
13秒前
jkq发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
55555发布了新的文献求助10
14秒前
15秒前
范宇航发布了新的文献求助20
15秒前
金属喵酱发布了新的文献求助10
15秒前
余姚发布了新的文献求助10
17秒前
香蕉觅云应助企鹅嗷嗷采纳,获得10
18秒前
华仔应助可耐的妙芙采纳,获得10
19秒前
HCLonely应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得20
19秒前
朱文龙发布了新的文献求助10
19秒前
大模型应助科研通管家采纳,获得10
19秒前
cocolu应助科研通管家采纳,获得10
19秒前
HCLonely应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
大模型应助科研通管家采纳,获得30
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313875
求助须知:如何正确求助?哪些是违规求助? 2946190
关于积分的说明 8528864
捐赠科研通 2621756
什么是DOI,文献DOI怎么找? 1434075
科研通“疑难数据库(出版商)”最低求助积分说明 665112
邀请新用户注册赠送积分活动 650718