A comprehensive artificial intelligence framework for dental diagnosis and charting

射线照相术 医学 牙骨质接合 人工智能 牙科 口腔正畸科 分割 计算机科学 计算机视觉 臼齿 放射科
作者
Tanjida Kabir,Chun‐Teh Lee,Luyao Chen,Xiaoqian Jiang,Soheil Shams
出处
期刊:BMC Oral Health [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12903-022-02514-6
摘要

Abstract Background The aim of this study was to develop artificial intelligence (AI) guided framework to recognize tooth numbers in panoramic and intraoral radiographs (periapical and bitewing) without prior domain knowledge and arrange the intraoral radiographs into a full mouth series (FMS) arrangement template. This model can be integrated with different diseases diagnosis models, such as periodontitis or caries, to facilitate clinical examinations and diagnoses. Methods The framework utilized image segmentation models to generate the masks of bone area, tooth, and cementoenamel junction (CEJ) lines from intraoral radiographs. These masks were used to detect and extract teeth bounding boxes utilizing several image analysis methods. Then, individual teeth were matched with a patient’s panoramic images (if available) or tooth repositories for assigning tooth numbers using the multi-scale matching strategy. This framework was tested on 1240 intraoral radiographs different from the training and internal validation cohort to avoid data snooping. Besides, a web interface was designed to generate a report for different dental abnormalities with tooth numbers to evaluate this framework’s practicality in clinical settings. Results The proposed method achieved the following precision and recall via panoramic view: 0.96 and 0.96 (via panoramic view) and 0.87 and 0.87 (via repository match) by handling tooth shape variation and outperforming other state-of-the-art methods. Additionally, the proposed framework could accurately arrange a set of intraoral radiographs into an FMS arrangement template based on positions and tooth numbers with an accuracy of 95% for periapical images and 90% for bitewing images. The accuracy of this framework was also 94% in the images with missing teeth and 89% with restorations. Conclusions The proposed tooth numbering model is robust and self-contained and can also be integrated with other dental diagnosis modules, such as alveolar bone assessment and caries detection. This artificial intelligence-based tooth detection and tooth number assignment in dental radiographs will help dentists with enhanced communication, documentation, and treatment planning accurately. In addition, the proposed framework can correctly specify detailed diagnostic information associated with a single tooth without human intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣慰睫毛膏完成签到 ,获得积分10
1秒前
段采萱完成签到 ,获得积分10
1秒前
1秒前
辣辣发布了新的文献求助10
2秒前
良陈美景奈何天完成签到 ,获得积分10
3秒前
林夕完成签到 ,获得积分10
5秒前
研友_Z119gZ完成签到 ,获得积分10
7秒前
7秒前
8秒前
迷你的心情完成签到,获得积分20
8秒前
knowledge完成签到,获得积分10
9秒前
9秒前
你好呀完成签到,获得积分20
10秒前
脑洞疼应助尔尔采纳,获得10
11秒前
bin发布了新的文献求助10
12秒前
你好呀发布了新的文献求助10
12秒前
从容的鲜花完成签到,获得积分10
12秒前
背后雨柏完成签到 ,获得积分10
14秒前
15秒前
Li_华应助从容的鲜花采纳,获得10
16秒前
大胆曲奇发布了新的文献求助10
16秒前
红薯干完成签到,获得积分10
17秒前
花生米一粒粒完成签到,获得积分10
18秒前
19秒前
小西完成签到 ,获得积分10
19秒前
11冰之泪完成签到 ,获得积分10
19秒前
强博弈发布了新的文献求助10
19秒前
传奇3应助小王子采纳,获得10
20秒前
平常心发布了新的文献求助10
20秒前
Earnestlee完成签到,获得积分10
21秒前
皑似山上雪完成签到,获得积分10
21秒前
夜阑卧听完成签到,获得积分10
21秒前
四夕完成签到 ,获得积分10
21秒前
小马完成签到,获得积分10
23秒前
大胆曲奇完成签到,获得积分10
23秒前
郭自同完成签到,获得积分10
23秒前
yiqifan完成签到,获得积分0
23秒前
25秒前
小马甲应助强博弈采纳,获得10
26秒前
priss111应助体贴的青烟采纳,获得30
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3242047
求助须知:如何正确求助?哪些是违规求助? 2886366
关于积分的说明 8243081
捐赠科研通 2555019
什么是DOI,文献DOI怎么找? 1383192
科研通“疑难数据库(出版商)”最低求助积分说明 649658
邀请新用户注册赠送积分活动 625417