Deciphering the alkaline stable mechanism of bacterial laccase from Bacillus pumilus by molecular dynamics simulation can improve the decolorization of textile dyes

漆酶 短小芽孢杆菌 化学 生物修复 流出物 分子动力学 生物转化 有机化学 细菌 计算化学 环境工程 遗传学 生物 发酵 工程类
作者
Jiashu Liu,Bianxia Li,Zhuang Li,Fan Yang,Bixin Chen,Jianhui Chen,Huanan Li,Zhengbing Jiang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:443: 130370-130370 被引量:17
标识
DOI:10.1016/j.jhazmat.2022.130370
摘要

Laccases are considered promising tools for removing synthetic dyes from textile and tannery effluents. However, the alkaline pH in the effluents causes laccase instability, inactivation, and difficulty in its bioremediation. Based on a Bacillus pumilus ZB1 (BpLac) derived alkaline stable laccase, this study aimed to elucidate its alkaline stable mechanism at molecular level using molecular dynamics simulation. The effects of metal ions, organic solvents, and inhibitors on BpLac activity were assessed. BpLac formed more salt bridges and negatively charged surface in alkaline environment. Thereafter, pH-induced conformation changes were analyzed using GROMACS at pH 5.0 and 10.0. Among the identified residues with high fluctuation, the distance between Pro359 and Thr414 was stable at pH 10.0 but highly variable at pH 5.0. DSSP analysis suggested that BpLac formed more β-sheet and less coil at pH 10.0. Principal component analysis and free energy landscape indicated that irregular coils formed at pH 5.0 benefit for activity, while rigid α-helix and β-sheet structures formed at pH 10.0 contributed to alkaline stability. Breaking the α-helix near T1 copper center would not reduce alkaline stability but could improve dye decolorization by BpLac. Overall, these findings would advance the potential application of bacterial laccase in alkaline effluent treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duxinyue关注了科研通微信公众号
刚刚
超级宇宙二踢脚关注了科研通微信公众号
刚刚
1秒前
1秒前
2秒前
务实盼海发布了新的文献求助10
2秒前
徐徐徐徐发布了新的文献求助10
3秒前
星晴遇见花海完成签到,获得积分10
3秒前
乐乐应助Rrr采纳,获得10
4秒前
难过鸿涛应助srt采纳,获得10
5秒前
6秒前
卡卡发布了新的文献求助10
6秒前
6秒前
8秒前
Jasper应助刘芸芸采纳,获得10
9秒前
m彬m彬完成签到 ,获得积分10
9秒前
10秒前
自信鑫鹏完成签到,获得积分10
10秒前
HYH完成签到,获得积分10
10秒前
Harish完成签到,获得积分10
11秒前
研友_851KE8发布了新的文献求助10
11秒前
11秒前
一段乐多发布了新的文献求助10
11秒前
11秒前
华仔完成签到,获得积分10
11秒前
刘百慧完成签到,获得积分10
11秒前
11秒前
Wyan发布了新的文献求助80
13秒前
成就映秋发布了新的文献求助30
13秒前
科研通AI2S应助坤坤采纳,获得10
13秒前
整齐芷文完成签到,获得积分10
14秒前
科研通AI5应助小马哥36采纳,获得10
14秒前
灵巧荆发布了新的文献求助10
15秒前
小二郎应助侦察兵采纳,获得10
15秒前
爆米花完成签到 ,获得积分10
15秒前
今后应助Evan123采纳,获得10
15秒前
凤凰之玉完成签到 ,获得积分10
16秒前
shi hui应助冬瓜炖排骨采纳,获得10
16秒前
17秒前
dyh6802发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794