A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation

RNA序列 插补(统计学) 数据集成 计算机科学 人口 人工智能 计算生物学 机器学习 数据挖掘 缺少数据 生物 基因表达 基因 遗传学 转录组 医学 环境卫生
作者
Justin Lakkis,Amelia Schroeder,Kenong Su,Michelle Y. Y. Lee,Alexander C. Bashore,Muredach P. Reilly,Mingyao Li
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (11): 940-952 被引量:53
标识
DOI:10.1038/s42256-022-00545-w
摘要

CITE-seq, a single-cell multi-omics technology that measures RNA and protein expression simultaneously in single cells, has been widely applied in biomedical research, especially in immune related disorders and other diseases such as influenza and COVID-19. Despite the proliferation of CITE-seq, it is still costly to generate such data. Although data integration can increase information content, this raises computational challenges. First, combining multiple datasets is prone to batch effects that need to be addressed. Secondly, it is difficult to combine multiple CITE-seq datasets because the protein panels in different datasets may only partially overlap. Integrating multiple CITE-seq and single-cell RNA-seq (scRNA-seq) datasets is important because this allows the utilization of as many data as possible to uncover cell population heterogeneity. To overcome these challenges, we present sciPENN, a multi-use deep learning approach that supports CITE-seq and scRNA-seq data integration, protein expression prediction for scRNA-seq, protein expression imputation for CITE-seq, quantification of prediction and imputation uncertainty, and cell type label transfer from CITE-seq to scRNA-seq. Comprehensive evaluations spanning multiple datasets demonstrate that sciPENN outperforms other current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮当猫关注了科研通微信公众号
刚刚
SYLH应助Zora采纳,获得10
1秒前
血小板发布了新的文献求助10
1秒前
wanci应助亮亮采纳,获得10
1秒前
Silence发布了新的文献求助10
1秒前
背后卿完成签到 ,获得积分10
1秒前
认真勒完成签到 ,获得积分10
1秒前
1秒前
36456657应助街道办事部采纳,获得10
2秒前
菠萝菠萝哒应助洋丶采纳,获得30
2秒前
3秒前
我要帅个够完成签到,获得积分10
3秒前
3秒前
4秒前
demi发布了新的文献求助10
4秒前
发条发布了新的文献求助20
4秒前
4秒前
zy发布了新的文献求助30
4秒前
Becky完成签到 ,获得积分10
5秒前
5秒前
充电宝应助哔哔鱼采纳,获得10
5秒前
科研通AI5应助白小爪采纳,获得10
6秒前
6秒前
6秒前
6秒前
lani完成签到 ,获得积分10
6秒前
王土豆完成签到 ,获得积分10
7秒前
7秒前
7秒前
cc完成签到 ,获得积分10
8秒前
Jack完成签到,获得积分10
8秒前
tiansiyu发布了新的文献求助10
8秒前
9秒前
乐乐应助我要帅个够采纳,获得10
9秒前
秀丽如松发布了新的文献求助10
9秒前
anyujie完成签到 ,获得积分10
9秒前
梓辰发布了新的文献求助10
10秒前
卡卡罗特发布了新的文献求助10
10秒前
快乐的白桃应助cjlu采纳,获得10
10秒前
疯狂的乌发布了新的文献求助10
11秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474842
求助须知:如何正确求助?哪些是违规求助? 3066929
关于积分的说明 9101738
捐赠科研通 2758293
什么是DOI,文献DOI怎么找? 1513527
邀请新用户注册赠送积分活动 699633
科研通“疑难数据库(出版商)”最低求助积分说明 699065