计算机科学
激光雷达
雷达
背景(考古学)
目标检测
人工智能
计算机视觉
对象(语法)
机器人学
分类
实时计算
软件
机器人
遥感
地理
模式识别(心理学)
数据库
操作系统
电信
考古
作者
Santiago Montiel-Marín,Carlos Gómez-Huélamo,Javier de la Peña,Miguel Antunes,Elena López,Luis M. Bergasa
出处
期刊:Lecture notes in networks and systems
日期:2022-11-18
卷期号:: 552-563
被引量:1
标识
DOI:10.1007/978-3-031-21062-4_45
摘要
Detection and Multi-Object Tracking (DAMOT) systems have a critical role to play in scene understanding in the context of autonomous driving. Modern Autonomous Driving Stacks (ADS) require a software processing unit or module that allows them to understand the data in the environment and convert it into vital information for further decision making. In this context, this work develops a DAMOT module based on Machine Learning techniques, such as DBSCAN or BEV-SORT, that receives information from LiDAR and RADAR sensors in CARLA Simulator. This module uses containerisation techniques with Docker and standard robotics communications with ROS. The performance of the method is evaluated in terms of detection in the AD PerDevKit dataset, developed by the authors.
科研通智能强力驱动
Strongly Powered by AbleSci AI