Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal–Organic Frameworks

计算机科学 吸附 概括性 金属有机骨架 人工神经网络 人工智能 图形 机器学习 理论计算机科学 化学 物理化学 心理学 心理治疗师
作者
Pin Chen,Rui Jiao,Jinyu Liu,Yang Liu,Yutong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (22): 5446-5456 被引量:15
标识
DOI:10.1021/acs.jcim.2c00876
摘要

Predicting interactions between metal-organic frameworks (MOFs) and their adsorbates based on structures is critical to design high-performance porous materials. Many gas uptake prediction models have been proposed, but adsorption isotherm prediction is still challenging for most existing models. Here, we report a deep learning approach (MOFNet) that can predict adsorption isotherms for MOFs based on hierarchical representation and pressure adaptive mechanism. We elaborately design a hierarchical representation to encode the MOF structures. We adopt a graph transformer network to capture atomic-level information, which can help learn chemical features required under low-pressure conditions. A pressure adaptive mechanism is employed to interpolate and extrapolate the given limited data points by transfer learning, which can predict adsorption isotherms on a wider pressure range by only one model. We demonstrate that our predictor outperformed other traditional machine learning as well as graph neural network models on the challenging benchmarks and also achieves high performance on the real-world experimental observed adsorption isotherms. Finally, we interpret the models to discover and present potential structure-property relationships using the self-attention mechanism in the network. The proof-of-concept applications, such as disordered MOF predictions and missing data imputation of gas adsorption isotherms, showcase the generality and usability of our model to improve MOF material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宇文书翠完成签到,获得积分10
刚刚
1秒前
Owen应助监理zhou采纳,获得10
4秒前
多久上课发布了新的文献求助10
4秒前
科研通AI5应助myy采纳,获得10
4秒前
Wen发布了新的文献求助10
5秒前
5秒前
suo关闭了suo文献求助
6秒前
666666666666666完成签到 ,获得积分10
7秒前
CAOHOU应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
cc应助科研通管家采纳,获得60
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
SHAO应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
ED应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
Rubby应助科研通管家采纳,获得10
8秒前
9秒前
卜凡发布了新的文献求助10
9秒前
10秒前
13秒前
15秒前
监理zhou完成签到,获得积分10
16秒前
17秒前
柒柒完成签到,获得积分10
18秒前
20秒前
监理zhou发布了新的文献求助10
21秒前
yun驳回了orixero应助
22秒前
lili发布了新的文献求助10
24秒前
liaodongjun应助yang采纳,获得30
24秒前
feiying88完成签到,获得积分10
24秒前
深情安青应助WqLiu采纳,获得10
28秒前
28秒前
彭于晏应助展希希采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425