Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal–Organic Frameworks

计算机科学 吸附 概括性 金属有机骨架 人工神经网络 人工智能 图形 机器学习 理论计算机科学 化学 物理化学 心理学 心理治疗师
作者
Pin Chen,Rui Jiao,Jinyu Liu,Yang Liu,Yutong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (22): 5446-5456 被引量:15
标识
DOI:10.1021/acs.jcim.2c00876
摘要

Predicting interactions between metal-organic frameworks (MOFs) and their adsorbates based on structures is critical to design high-performance porous materials. Many gas uptake prediction models have been proposed, but adsorption isotherm prediction is still challenging for most existing models. Here, we report a deep learning approach (MOFNet) that can predict adsorption isotherms for MOFs based on hierarchical representation and pressure adaptive mechanism. We elaborately design a hierarchical representation to encode the MOF structures. We adopt a graph transformer network to capture atomic-level information, which can help learn chemical features required under low-pressure conditions. A pressure adaptive mechanism is employed to interpolate and extrapolate the given limited data points by transfer learning, which can predict adsorption isotherms on a wider pressure range by only one model. We demonstrate that our predictor outperformed other traditional machine learning as well as graph neural network models on the challenging benchmarks and also achieves high performance on the real-world experimental observed adsorption isotherms. Finally, we interpret the models to discover and present potential structure-property relationships using the self-attention mechanism in the network. The proof-of-concept applications, such as disordered MOF predictions and missing data imputation of gas adsorption isotherms, showcase the generality and usability of our model to improve MOF material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TTina关注了科研通微信公众号
刚刚
逆旅发布了新的文献求助10
1秒前
科研通AI2S应助OlivePlum采纳,获得10
3秒前
ranranran发布了新的文献求助10
3秒前
lululu发布了新的文献求助10
3秒前
菠萝吹雪完成签到,获得积分10
4秒前
Owen应助缘稚采纳,获得10
5秒前
SU完成签到,获得积分10
6秒前
俞渝完成签到,获得积分20
6秒前
8秒前
10秒前
yolanda发布了新的文献求助10
12秒前
JamesPei应助GSQ采纳,获得10
12秒前
12秒前
13秒前
在水一方应助lululu采纳,获得10
14秒前
二个虎牙发布了新的文献求助10
14秒前
revew666完成签到,获得积分10
15秒前
15秒前
多情的梦蕊完成签到,获得积分10
15秒前
上官若男应助千夜采纳,获得10
16秒前
16秒前
华仔应助sxy采纳,获得10
17秒前
iNk应助四福祥采纳,获得10
18秒前
18秒前
乐生完成签到,获得积分20
18秒前
18秒前
吴海彤完成签到,获得积分10
19秒前
20秒前
20秒前
23秒前
123发布了新的文献求助10
23秒前
23秒前
Akim应助孤檠采纳,获得10
25秒前
Henry给迢迢笙箫的求助进行了留言
26秒前
我是老大应助科研通管家采纳,获得10
28秒前
28秒前
汉堡包应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145294
求助须知:如何正确求助?哪些是违规求助? 2796749
关于积分的说明 7821013
捐赠科研通 2453006
什么是DOI,文献DOI怎么找? 1305347
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464