Interpretable Graph Transformer Network for Predicting Adsorption Isotherms of Metal–Organic Frameworks

计算机科学 吸附 概括性 金属有机骨架 人工神经网络 人工智能 图形 机器学习 理论计算机科学 化学 物理化学 心理学 心理治疗师
作者
Pin Chen,Rui Jiao,Jinyu Liu,Yang Liu,Yutong Lu
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (22): 5446-5456 被引量:15
标识
DOI:10.1021/acs.jcim.2c00876
摘要

Predicting interactions between metal-organic frameworks (MOFs) and their adsorbates based on structures is critical to design high-performance porous materials. Many gas uptake prediction models have been proposed, but adsorption isotherm prediction is still challenging for most existing models. Here, we report a deep learning approach (MOFNet) that can predict adsorption isotherms for MOFs based on hierarchical representation and pressure adaptive mechanism. We elaborately design a hierarchical representation to encode the MOF structures. We adopt a graph transformer network to capture atomic-level information, which can help learn chemical features required under low-pressure conditions. A pressure adaptive mechanism is employed to interpolate and extrapolate the given limited data points by transfer learning, which can predict adsorption isotherms on a wider pressure range by only one model. We demonstrate that our predictor outperformed other traditional machine learning as well as graph neural network models on the challenging benchmarks and also achieves high performance on the real-world experimental observed adsorption isotherms. Finally, we interpret the models to discover and present potential structure-property relationships using the self-attention mechanism in the network. The proof-of-concept applications, such as disordered MOF predictions and missing data imputation of gas adsorption isotherms, showcase the generality and usability of our model to improve MOF material design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
细腻听白发布了新的文献求助30
2秒前
2秒前
2秒前
川三发布了新的文献求助10
2秒前
3秒前
小潘完成签到 ,获得积分10
3秒前
Orange应助希度采纳,获得10
4秒前
量子星尘发布了新的文献求助150
4秒前
开放的愫发布了新的文献求助10
4秒前
姚驰完成签到,获得积分10
5秒前
5秒前
6秒前
Hannah发布了新的文献求助10
6秒前
aabot完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
vikoel发布了新的文献求助10
8秒前
KD发布了新的文献求助10
9秒前
10秒前
化学之星完成签到,获得积分10
10秒前
11秒前
桐桐应助majf采纳,获得10
11秒前
BANANA发布了新的文献求助10
11秒前
DingShicong完成签到 ,获得积分10
11秒前
12秒前
爆米花应助qc采纳,获得10
13秒前
13秒前
14秒前
15秒前
Judy完成签到 ,获得积分10
15秒前
孙子豪完成签到,获得积分10
16秒前
fyp发布了新的文献求助10
16秒前
xiaoming发布了新的文献求助10
16秒前
17秒前
东日完成签到,获得积分10
18秒前
中草药完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650