Self-supervised transfer learning framework driven by visual attention for benign–malignant lung nodule classification on chest CT

判别式 学习迁移 计算机科学 人工智能 恶性肿瘤 结核(地质) 深度学习 机器学习 肺癌 监督学习 模式识别(心理学) 放射科 医学 病理 人工神经网络 生物 古生物学
作者
Ruoyu Wu,Changyu Liang,Yuan Li,Xu Shi,Jiuquan Zhang,Hong Huang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119339-119339 被引量:19
标识
DOI:10.1016/j.eswa.2022.119339
摘要

Lung cancer is one of the most fatal malignant diseases, which poses an acute menace to human health and life. The accurate differential diagnosis of lung nodules is a vital step in the computed tomography (CT)-based noninvasive screening of lung cancer. Though deep learning-based methodologies have achieved good results in the task of nodule malignancy prediction, there are still two fundamental challenges that are required to be overcome, including insufficient labeled samples and the interferences of background tissues. Motivated by the above facts, a self-supervised transfer learning framework driven by visual attention (STLF-VA) is presented for benign–malignant identification of nodules on chest CT, which advocates using volumes containing the entire nodule objects as inputs to obtain discriminative features. Compared with traditional models that designed 2D natural image-based transfer learning models or learning from scratch 3D models, the proposed STLF-VA method can effectively alleviate the dependence on labeled samples by exploring the valuable information from 3D unlabeled CT scans in a coarse-to-fine self-supervised transfer learning fashion. Unlike the single attention mechanism, the multi-view aggregative attention (MVAA) module embedded in the STLF-VA architecture fully recalibrates the multi-layer feature maps from multiple attention angles, and can strengthen the anti-interference ability on background information. Moreover, a new dataset CQUCH-LND is constructed for evaluating the effectiveness of the STLF-VA model in clinical practice. Experimental results on the clinical dataset CQUCH-LND and the public dataset LIDC-IDRI indicate that the proposed STLF-VA framework achieves more competitive performance than some state-of-the-art nodule classification approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助实验老六采纳,获得10
刚刚
等待冬易发布了新的文献求助10
1秒前
ZXK完成签到 ,获得积分10
1秒前
1秒前
烟花应助hvivi6采纳,获得10
1秒前
Lucky完成签到 ,获得积分10
2秒前
思源应助momo采纳,获得10
2秒前
jerry发布了新的文献求助10
3秒前
3秒前
4秒前
新明完成签到,获得积分10
4秒前
runfen完成签到,获得积分10
5秒前
5秒前
6秒前
smottom应助ZH采纳,获得10
6秒前
7秒前
xrq发布了新的文献求助10
8秒前
CHRIS发布了新的文献求助10
9秒前
清爽帽子发布了新的文献求助10
9秒前
wlwl完成签到,获得积分10
9秒前
任小九发布了新的文献求助10
10秒前
英俊的铭应助Scalpel采纳,获得10
11秒前
shinco发布了新的文献求助10
11秒前
吉乐园完成签到,获得积分20
11秒前
彭于晏应助赵成龙采纳,获得10
11秒前
ysy发布了新的文献求助10
12秒前
木木发布了新的文献求助10
12秒前
东皇太憨完成签到,获得积分10
12秒前
FashionBoy应助jerry采纳,获得10
14秒前
14秒前
苏易简完成签到,获得积分10
14秒前
星辰大海应助万事顺遂采纳,获得10
15秒前
华仔应助吉乐园采纳,获得10
16秒前
实验老六发布了新的文献求助10
18秒前
19秒前
shinco完成签到,获得积分20
20秒前
21秒前
CHRIS完成签到,获得积分10
22秒前
啦啦啦喽发布了新的文献求助10
23秒前
任小九完成签到,获得积分20
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432