短肠综合征
营养物
小肠
生物
医学
食品科学
化学
生物化学
有机化学
内科学
肠外营养
作者
Zhengming Zhou,Ke Li,Lei Shi,Yunfeng Wang,Yunxiang He,Wen Hu,Junling Guo
标识
DOI:10.1002/adhm.202201933
摘要
Extensive resection of the small intestine leads to the development of short bowel syndrome (SBS), which reduces the effective absorptive surface area of the intestine and predisposes patients to emaciation, malnutrition, and other severe symptoms. Herein, green tea catechin (-)-epigallocatechin gallate (EGCG) and ferrous ions (Fe2+ ) are utilized to construct a nutrient carrier platform that self-assembles with nutrients to form phenolic-based nutrient complexes (PNCs). PNCs effectively prolong the residence and absorption time of nutrients in the intestine. Further this platform is applied to integrate full nutrient formula, an enteral nutrition (EN) preparation containing a range of full nutrient components. In an SBS rat model, the prepared phenolic-based integrative nutrient complexes (PINCs) enhance nutritional status, improve anemia and immune function, as well as facilitate the growth of remaining intestinal villi and crypts, and maintain the integrity of the intestinal barrier. In addition, PINCs enable the modulation of gut microbial dysbiosis, enrich the abundance of beneficial bacteria, and have no toxic effects after the long-term ingestion. These results provide a proof of principle for the use of polyphenol-based nanocomplexes as EN preparation, offering a feasible strategy for both nutritional support and therapeutic perspectives for SBS treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI