A sentiment-enhanced hybrid model for crude oil price forecasting

计算机科学 加权 深度学习 人工智能 原油 机器学习 医学 石油工程 放射科 工程类
作者
Yan Fang,Wenyan Wang,Peng Wu,Yunfan Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119329-119329 被引量:8
标识
DOI:10.1016/j.eswa.2022.119329
摘要

The crude oil market plays a vital role in the world economy. However, due to the noisy characteristics of the market and the complex and non-stationary nature of the asset series, forecasting the price of oil is particularly challenging. In this study, a new hybrid forecasting approach named FinBERT-VMD-Att-BiGRU is proposed. This integrates FinBERT, variational mode decomposition (VMD), an attention mechanism, and the BiGRU deep-learning model. Specifically, we apply the FinBERT approach to extracting news information for price forecasting, apply VMD to decompose the complex sequence of price series into several simple and stationary subseries, use an attention mechanism to implicitly assign weights to the input features of the deep-learning model, and then adopt BiGRU for price forecasting. The proposed forecasting framework can not only extract qualitative information from crude oil news headlines but also capture both internal and external factors relating to the oil market. Our experimental results show that: (1) the sentiment-enhanced hybrid forecasting approach significantly improves the forecasting performance measured using various benchmarks; (2) the weighting scheme in the sentiment analysis effectively increases the accuracy of the forecasts; (3) a trading strategy based on forecasting results generated by the proposed model can outperform several other common trading strategies. In short, our proposed FinBERT-VMD-Att-BiGRU model has excellent performance in forecasting the price of crude oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助狗东西采纳,获得10
刚刚
周悠悠发布了新的文献求助10
刚刚
刚刚
瓜瓜完成签到,获得积分10
1秒前
3秒前
3秒前
崔哈哈发布了新的文献求助10
4秒前
memedaaaah发布了新的文献求助10
5秒前
Ekko完成签到,获得积分10
5秒前
5秒前
DG发布了新的文献求助10
6秒前
7秒前
小蘑菇应助干净利落采纳,获得10
7秒前
希望天下0贩的0应助星辰采纳,获得10
7秒前
张世豪发布了新的文献求助10
8秒前
所所应助津海007采纳,获得10
8秒前
Hello应助pamela采纳,获得10
9秒前
周悠悠完成签到,获得积分10
9秒前
爱笑的冷风完成签到 ,获得积分10
9秒前
坚定惜梦发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
Haonan完成签到,获得积分10
15秒前
开心颜演完成签到,获得积分20
16秒前
Titter完成签到,获得积分10
17秒前
17秒前
干净利落完成签到,获得积分10
20秒前
灵萱完成签到,获得积分10
20秒前
Banana完成签到 ,获得积分10
20秒前
21秒前
21秒前
张世豪完成签到,获得积分20
22秒前
干净利落发布了新的文献求助10
22秒前
隐形的傲易完成签到,获得积分10
23秒前
鄢廷芮完成签到 ,获得积分10
23秒前
mo完成签到 ,获得积分10
24秒前
浅诺完成签到,获得积分10
24秒前
打打应助灵萱采纳,获得20
24秒前
大方的蓝完成签到 ,获得积分10
25秒前
狗东西发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792