A sentiment-enhanced hybrid model for crude oil price forecasting

计算机科学 加权 深度学习 人工智能 原油 机器学习 医学 石油工程 放射科 工程类
作者
Yan Fang,Wenyan Wang,Peng Wu,Yunfan Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119329-119329 被引量:8
标识
DOI:10.1016/j.eswa.2022.119329
摘要

The crude oil market plays a vital role in the world economy. However, due to the noisy characteristics of the market and the complex and non-stationary nature of the asset series, forecasting the price of oil is particularly challenging. In this study, a new hybrid forecasting approach named FinBERT-VMD-Att-BiGRU is proposed. This integrates FinBERT, variational mode decomposition (VMD), an attention mechanism, and the BiGRU deep-learning model. Specifically, we apply the FinBERT approach to extracting news information for price forecasting, apply VMD to decompose the complex sequence of price series into several simple and stationary subseries, use an attention mechanism to implicitly assign weights to the input features of the deep-learning model, and then adopt BiGRU for price forecasting. The proposed forecasting framework can not only extract qualitative information from crude oil news headlines but also capture both internal and external factors relating to the oil market. Our experimental results show that: (1) the sentiment-enhanced hybrid forecasting approach significantly improves the forecasting performance measured using various benchmarks; (2) the weighting scheme in the sentiment analysis effectively increases the accuracy of the forecasts; (3) a trading strategy based on forecasting results generated by the proposed model can outperform several other common trading strategies. In short, our proposed FinBERT-VMD-Att-BiGRU model has excellent performance in forecasting the price of crude oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
大猫不吃鱼完成签到,获得积分10
1秒前
小威发布了新的文献求助10
1秒前
浮云发布了新的文献求助10
1秒前
whh123发布了新的文献求助10
2秒前
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
情怀应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
唐古拉完成签到,获得积分10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
robert3324应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
笨笨筮完成签到,获得积分10
4秒前
朴实寻琴发布了新的文献求助10
5秒前
SYX发布了新的文献求助10
6秒前
nancyzhao完成签到 ,获得积分10
7秒前
小二郎应助大虫子采纳,获得10
8秒前
思源应助追寻紫安采纳,获得10
8秒前
min17发布了新的文献求助10
9秒前
虚幻赛凤发布了新的文献求助10
9秒前
李爱国应助谨慎垣采纳,获得10
12秒前
斯文败类应助乐小泽采纳,获得10
12秒前
wwc完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
min17完成签到,获得积分10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129330
求助须知:如何正确求助?哪些是违规求助? 2780114
关于积分的说明 7746436
捐赠科研通 2435295
什么是DOI,文献DOI怎么找? 1294036
科研通“疑难数据库(出版商)”最低求助积分说明 623516
版权声明 600542