A sentiment-enhanced hybrid model for crude oil price forecasting

计算机科学 加权 深度学习 人工智能 原油 机器学习 医学 石油工程 放射科 工程类
作者
Yan Fang,Wenyan Wang,Peng Wu,Yunfan Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119329-119329 被引量:8
标识
DOI:10.1016/j.eswa.2022.119329
摘要

The crude oil market plays a vital role in the world economy. However, due to the noisy characteristics of the market and the complex and non-stationary nature of the asset series, forecasting the price of oil is particularly challenging. In this study, a new hybrid forecasting approach named FinBERT-VMD-Att-BiGRU is proposed. This integrates FinBERT, variational mode decomposition (VMD), an attention mechanism, and the BiGRU deep-learning model. Specifically, we apply the FinBERT approach to extracting news information for price forecasting, apply VMD to decompose the complex sequence of price series into several simple and stationary subseries, use an attention mechanism to implicitly assign weights to the input features of the deep-learning model, and then adopt BiGRU for price forecasting. The proposed forecasting framework can not only extract qualitative information from crude oil news headlines but also capture both internal and external factors relating to the oil market. Our experimental results show that: (1) the sentiment-enhanced hybrid forecasting approach significantly improves the forecasting performance measured using various benchmarks; (2) the weighting scheme in the sentiment analysis effectively increases the accuracy of the forecasts; (3) a trading strategy based on forecasting results generated by the proposed model can outperform several other common trading strategies. In short, our proposed FinBERT-VMD-Att-BiGRU model has excellent performance in forecasting the price of crude oil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木木应助畅快的书兰采纳,获得10
刚刚
刚刚
SID完成签到,获得积分10
刚刚
Voloid完成签到,获得积分10
1秒前
1秒前
大肉猪完成签到,获得积分10
1秒前
充电宝应助you采纳,获得10
1秒前
2秒前
培a完成签到,获得积分10
2秒前
朴素绿真完成签到,获得积分10
2秒前
写得出发的中完成签到,获得积分10
2秒前
过氧化氢应助咖可乐采纳,获得10
3秒前
3秒前
邺水朱华完成签到,获得积分10
3秒前
3秒前
ZSJ完成签到,获得积分10
4秒前
曾经念真应助完美的凡灵采纳,获得10
4秒前
领导范儿应助幽默的书本采纳,获得30
5秒前
5秒前
6秒前
包凡之完成签到,获得积分10
6秒前
honeybee完成签到,获得积分10
6秒前
张雅雅发布了新的文献求助10
6秒前
似画发布了新的文献求助10
6秒前
邺水朱华发布了新的文献求助30
6秒前
leozhang完成签到,获得积分10
6秒前
自然1111发布了新的文献求助10
7秒前
充电宝应助liuxinying采纳,获得10
8秒前
8秒前
9秒前
欣喜白羊完成签到,获得积分10
9秒前
10秒前
@A完成签到,获得积分10
10秒前
CAOHOU应助迷你的迎南采纳,获得10
10秒前
柠檬完成签到,获得积分10
11秒前
ATREE完成签到,获得积分10
11秒前
11秒前
任性柔发布了新的文献求助10
12秒前
12秒前
顾矜应助龙哥采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582