亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CATs++: Boosting Cost Aggregation With Convolutions and Transformers

计算机科学 人工智能 变压器 Boosting(机器学习) 稳健性(进化) 模式识别(心理学) 机器学习 生物化学 量子力学 基因 物理 电压 化学
作者
Seokju Cho,Sunghwan Hong,Seungryong Kim
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (6): 7174-7194 被引量:8
标识
DOI:10.1109/tpami.2022.3218727
摘要

Cost aggregation is a process in image matching tasks that aims to disambiguate the noisy matching scores. Existing methods generally tackle this by hand-crafted or CNN-based methods, which either lack robustness to severe deformations or inherit the limitation of CNNs that fail to discriminate incorrect matches due to limited receptive fields and inadaptability. In this paper, we introduce Cost Aggregation with Transformers (CATs) to tackle this by exploring global consensus among initial correlation map with the help of some architectural designs that allow us to benefit from global receptive fields of self-attention mechanism. To this end, we include appearance affinity modeling, which helps to disambiguate the noisy initial correlation maps. Furthermore, we introduce some techniques, including multi-level aggregation to exploit rich semantics prevalent at different feature levels and swapping self-attention to obtain reciprocal matching scores to act as a regularization. Although CATs can attain competitive performance, it may face some limitations, i.e., high computational costs, which may restrict its applicability only at limited resolution and hurt performance. To overcome this, we propose CATs++, an extension of CATs. Concretely, we introduce early convolutions prior to cost aggregation with a transformer to control the number of tokens and inject some convolutional inductive bias, then propose a novel transformer architecture for both efficient and effective cost aggregation, which results in apparent performance boost and cost reduction. With the reduced costs, we are able to compose our network with a hierarchical structure to process higher-resolution inputs. We show that the proposed method with these integrated outperforms the previous state-of-the-art methods by large margins. Codes and pretrained weights are available at: https://ku-cvlab.github.io/CATs-PlusPlus-Project-Page/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫芝麻完成签到,获得积分10
32秒前
灰色白面鸮完成签到,获得积分10
38秒前
40秒前
YifanWang应助科研通管家采纳,获得30
41秒前
YifanWang应助科研通管家采纳,获得30
41秒前
YifanWang应助科研通管家采纳,获得30
41秒前
41秒前
lab完成签到 ,获得积分0
58秒前
1分钟前
1分钟前
ai zs发布了新的文献求助10
1分钟前
毛123完成签到,获得积分10
1分钟前
丫丫完成签到 ,获得积分10
1分钟前
陈芒果啊完成签到 ,获得积分10
1分钟前
郁乾完成签到,获得积分10
2分钟前
小枣完成签到 ,获得积分10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
樱桃猴子应助科研通管家采纳,获得20
2分钟前
orixero应助材料虎采纳,获得10
3分钟前
3分钟前
材料虎发布了新的文献求助10
3分钟前
3分钟前
3分钟前
何何发布了新的文献求助10
3分钟前
Ldq完成签到 ,获得积分10
4分钟前
李爱国应助wwwww采纳,获得10
4分钟前
传奇完成签到 ,获得积分10
4分钟前
4分钟前
Hello应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
wwwww完成签到,获得积分10
4分钟前
wwwww发布了新的文献求助10
4分钟前
4分钟前
ai zs发布了新的文献求助10
5分钟前
5分钟前
5分钟前
rongrong完成签到,获得积分20
5分钟前
rongrong发布了新的文献求助10
5分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899645
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316517
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142