DFENet: A dual-branch feature enhanced network integrating transformers and convolutional feature learning for multimodal medical image fusion

计算机科学 人工智能 图像融合 卷积神经网络 编码器 变压器 像素 计算机视觉 医学影像学 模式识别(心理学) 图像(数学) 量子力学 操作系统 物理 电压
作者
Weisheng Li,Yin Zhang,Guofen Wang,Yuping Huang,Ruyue Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104402-104402 被引量:47
标识
DOI:10.1016/j.bspc.2022.104402
摘要

• A model combining CNN module and the transformer module is proposed for multimodal medical image fusion. The CNN module is used to extract image detail texture information, while the transformer module is used to extract image pixel intensity distribution information. In the Harvard brain atlas test dataset, extensive experimental results demonstrate that the proposed method outperforms comparable algorithms. • A GSFAM is proposed and applied to the encoder, which can fully aggregate the different features learned by the multi-scale transformer module. Subjective and objective experiments have also shown that the addition of this module can significantly improve the quality of reconstructed images. • A fusion strategy combining the maximum of local energy information and the gradient information of the image is proposed and applied to the multimodal medical image fusion tasks of MRI-PET and MRI-SPECT. The texture details of the original image are well preserved without losing the more important pixel distribution difference structure information of the original image. • The massive experimental results show that the proposed medical image fusion algorithm expresses some advantages over the classical medical image fusion algorithms in objective and subjective evaluation. These results contribute to the further development of medical image fusion. We hope this paper is suitable for “Biomedical Signal Processing and Control”. In recent times, several medical image fusion techniques based on the convolutional neural network (CNN) have been proposed for various medical imaging fusion tasks. However, these methods cannot model the long-range dependencies between the fused image and the source images. To address this limitation, we propose DFENet, a multimodal medical image fusion framework that integrates CNN feature learning and vision transformer feature learning using self-supervised learning. DFENet is based on an encoder-decoder network, which can be trained on large-scale natural image dataset without the need for carefully collated ground truth fusion images. The proposed network consists of an encoder, a feature fuser, and a decoder. The encoder is composed of a CNN module and a transformer module, which is used to extract local and global features of images. In order to avoid the use of simple up-sampling and concatenate processing, a new global semantic information aggregation module is proposed to efficiently aggregate the multi-scale features obtained by the transformer module, which enhances the quality of the reconstructed images. The decoder is composed of six convolution layers with two skip connections, which are used for the reconstruction from fused features. We also propose a fusion strategy combining local energy and gradient information for the feature fusion process of magnetic resonance imaging and functional medical images. Compared to conventional fusion rules, our fusion strategy is more robust to noisy images. And compared with the existing competitive methods, our method retains more texture details of the original images and outputs a more natural and realistic fused image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的初露完成签到,获得积分10
刚刚
Mac完成签到,获得积分20
1秒前
愉快的海发布了新的文献求助20
1秒前
huohuo143完成签到,获得积分10
1秒前
暮冬完成签到 ,获得积分10
1秒前
1秒前
激情的含巧完成签到,获得积分10
2秒前
圆锥香蕉应助俊逸的代曼采纳,获得20
2秒前
2秒前
付榆峰发布了新的文献求助10
2秒前
大胆洋葱发布了新的文献求助10
2秒前
3秒前
卷卷睡完成签到,获得积分10
3秒前
叉叉茶发布了新的文献求助10
3秒前
3秒前
boyue发布了新的文献求助10
3秒前
重要的溪流完成签到,获得积分10
4秒前
安详靖柏完成签到 ,获得积分10
4秒前
5秒前
FashionBoy应助天真的一斩采纳,获得10
6秒前
阿七完成签到,获得积分10
6秒前
个别发布了新的文献求助10
7秒前
7秒前
sos完成签到,获得积分10
7秒前
宓不评完成签到,获得积分10
8秒前
Lucas应助橘子果酱采纳,获得10
8秒前
8秒前
8秒前
天天快乐应助GGGGGG果果采纳,获得10
8秒前
丁又菡完成签到,获得积分10
9秒前
磨人的老妖精完成签到,获得积分10
9秒前
9秒前
9秒前
liu完成签到,获得积分20
10秒前
GaajeoiC完成签到,获得积分10
10秒前
Bo0108完成签到,获得积分10
10秒前
Andy1201完成签到,获得积分10
10秒前
10秒前
付榆峰完成签到,获得积分10
10秒前
David_xx发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016558
求助须知:如何正确求助?哪些是违规求助? 3556732
关于积分的说明 11322479
捐赠科研通 3289455
什么是DOI,文献DOI怎么找? 1812490
邀请新用户注册赠送积分活动 888053
科研通“疑难数据库(出版商)”最低求助积分说明 812074