已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DFENet: A dual-branch feature enhanced network integrating transformers and convolutional feature learning for multimodal medical image fusion

计算机科学 人工智能 特征(语言学) 卷积神经网络 特征学习 融合 变压器 计算机视觉 模式识别(心理学) 图像(数学) 语言学 量子力学 物理 哲学 电压
作者
Weisheng Li,Yin Zhang,Guofen Wang,Yuping Huang,Ruyue Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104402-104402 被引量:35
标识
DOI:10.1016/j.bspc.2022.104402
摘要

• A model combining CNN module and the transformer module is proposed for multimodal medical image fusion. The CNN module is used to extract image detail texture information, while the transformer module is used to extract image pixel intensity distribution information. In the Harvard brain atlas test dataset, extensive experimental results demonstrate that the proposed method outperforms comparable algorithms. • A GSFAM is proposed and applied to the encoder, which can fully aggregate the different features learned by the multi-scale transformer module. Subjective and objective experiments have also shown that the addition of this module can significantly improve the quality of reconstructed images. • A fusion strategy combining the maximum of local energy information and the gradient information of the image is proposed and applied to the multimodal medical image fusion tasks of MRI-PET and MRI-SPECT. The texture details of the original image are well preserved without losing the more important pixel distribution difference structure information of the original image. • The massive experimental results show that the proposed medical image fusion algorithm expresses some advantages over the classical medical image fusion algorithms in objective and subjective evaluation. These results contribute to the further development of medical image fusion. We hope this paper is suitable for “Biomedical Signal Processing and Control”. In recent times, several medical image fusion techniques based on the convolutional neural network (CNN) have been proposed for various medical imaging fusion tasks. However, these methods cannot model the long-range dependencies between the fused image and the source images. To address this limitation, we propose DFENet, a multimodal medical image fusion framework that integrates CNN feature learning and vision transformer feature learning using self-supervised learning. DFENet is based on an encoder-decoder network, which can be trained on large-scale natural image dataset without the need for carefully collated ground truth fusion images. The proposed network consists of an encoder, a feature fuser, and a decoder. The encoder is composed of a CNN module and a transformer module, which is used to extract local and global features of images. In order to avoid the use of simple up-sampling and concatenate processing, a new global semantic information aggregation module is proposed to efficiently aggregate the multi-scale features obtained by the transformer module, which enhances the quality of the reconstructed images. The decoder is composed of six convolution layers with two skip connections, which are used for the reconstruction from fused features. We also propose a fusion strategy combining local energy and gradient information for the feature fusion process of magnetic resonance imaging and functional medical images. Compared to conventional fusion rules, our fusion strategy is more robust to noisy images. And compared with the existing competitive methods, our method retains more texture details of the original images and outputs a more natural and realistic fused image.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白先生完成签到,获得积分10
1秒前
繁荣的又夏完成签到,获得积分20
4秒前
7秒前
9秒前
sunday完成签到 ,获得积分10
12秒前
李爱国应助Scientist采纳,获得10
14秒前
19秒前
太阳发布了新的文献求助30
19秒前
hazardatom完成签到 ,获得积分10
24秒前
check003完成签到,获得积分10
24秒前
唠叨的傲薇完成签到,获得积分10
25秒前
早睡能长个完成签到,获得积分10
25秒前
26秒前
zulpiye发布了新的文献求助10
30秒前
tuanheqi应助彭幽采纳,获得30
37秒前
Han完成签到,获得积分10
39秒前
炙热芷蕊完成签到,获得积分10
39秒前
40秒前
42秒前
落沧完成签到 ,获得积分10
47秒前
bkagyin应助dlfg采纳,获得10
51秒前
复杂问筠完成签到 ,获得积分10
56秒前
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
飞快的孱完成签到,获得积分10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
所所应助科研通管家采纳,获得10
1分钟前
kk发布了新的文献求助10
1分钟前
Enisbao发布了新的文献求助30
1分钟前
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229564
求助须知:如何正确求助?哪些是违规求助? 2877200
关于积分的说明 8198195
捐赠科研通 2544545
什么是DOI,文献DOI怎么找? 1374513
科研通“疑难数据库(出版商)”最低求助积分说明 646978
邀请新用户注册赠送积分活动 621749