Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study

生命银行 心力衰竭 人口 医学 心房颤动 内科学 机器学习 人工智能 生物信息学 计算机科学 生物 环境卫生
作者
Amitava Banerjee,Ashkan Dashtban,Suliang Chen,Laura Pasea,Johan H. Thygesen,Ghazaleh Fatemifar,Lukas Habegger,Tomasz Dyszynski,Folkert W. Asselbergs,Lars H. Lund,R Thomas Lumbers,Spiros Denaxas,Harry Hemingway
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:5 (6): e370-e379 被引量:16
标识
DOI:10.1016/s2589-7500(23)00065-1
摘要

BackgroundMachine learning has been used to analyse heart failure subtypes, but not across large, distinct, population-based datasets, across the whole spectrum of causes and presentations, or with clinical and non-clinical validation by different machine learning methods. Using our published framework, we aimed to discover heart failure subtypes and validate them upon population representative data.MethodsIn this external, prognostic, and genetic validation study we analysed individuals aged 30 years or older with incident heart failure from two population-based databases in the UK (Clinical Practice Research Datalink [CPRD] and The Health Improvement Network [THIN]) from 1998 to 2018. Pre-heart failure and post-heart failure factors (n=645) included demographic information, history, examination, blood laboratory values, and medications. We identified subtypes using four unsupervised machine learning methods (K-means, hierarchical, K-Medoids, and mixture model clustering) with 87 of 645 factors in each dataset. We evaluated subtypes for (1) external validity (across datasets); (2) prognostic validity (predictive accuracy for 1-year mortality); and (3) genetic validity (UK Biobank), association with polygenic risk score (PRS) for heart failure-related traits (n=11), and single nucleotide polymorphisms (n=12).FindingsWe included 188 800, 124 262, and 9573 individuals with incident heart failure from CPRD, THIN, and UK Biobank, respectively, between Jan 1, 1998, and Jan 1, 2018. After identifying five clusters, we labelled heart failure subtypes as (1) early onset, (2) late onset, (3) atrial fibrillation related, (4) metabolic, and (5) cardiometabolic. In the external validity analysis, subtypes were similar across datasets (c-statistics: THIN model in CPRD ranged from 0·79 [subtype 3] to 0·94 [subtype 1], and CPRD model in THIN ranged from 0·79 [subtype 1] to 0·92 [subtypes 2 and 5]). In the prognostic validity analysis, 1-year all-cause mortality after heart failure diagnosis (subtype 1 0·20 [95% CI 0·14–0·25], subtype 2 0·46 [0·43–0·49], subtype 3 0·61 [0·57–0·64], subtype 4 0·11 [0·07–0·16], and subtype 5 0·37 [0·32–0·41]) differed across subtypes in CPRD and THIN data, as did risk of non-fatal cardiovascular diseases and all-cause hospitalisation. In the genetic validity analysis the atrial fibrillation-related subtype showed associations with the related PRS. Late onset and cardiometabolic subtypes were the most similar and strongly associated with PRS for hypertension, myocardial infarction, and obesity (p<0·0009). We developed a prototype app for routine clinical use, which could enable evaluation of effectiveness and cost-effectiveness.InterpretationAcross four methods and three datasets, including genetic data, in the largest study of incident heart failure to date, we identified five machine learning-informed subtypes, which might inform aetiological research, clinical risk prediction, and the design of heart failure trials.FundingEuropean Union Innovative Medicines Initiative-2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hahais250发布了新的文献求助10
刚刚
1秒前
二二二发布了新的文献求助10
2秒前
杨娟娟完成签到,获得积分10
2秒前
4秒前
慢慢发布了新的文献求助10
4秒前
5秒前
5秒前
Jasper应助666采纳,获得10
5秒前
Green完成签到,获得积分10
5秒前
温婉的荷花完成签到,获得积分10
7秒前
8秒前
冷静剑成完成签到,获得积分10
8秒前
kaww发布了新的文献求助10
9秒前
abjz完成签到,获得积分10
10秒前
10秒前
英俊的铭应助清新的苑博采纳,获得10
10秒前
11秒前
一小只完成签到,获得积分10
11秒前
科目三应助Owen采纳,获得10
12秒前
哈哈哈哈发布了新的文献求助10
12秒前
12秒前
OKO完成签到,获得积分10
14秒前
闲谈落月发布了新的文献求助10
15秒前
15秒前
流子完成签到,获得积分10
15秒前
赘婿应助复杂的如萱采纳,获得10
16秒前
kaww完成签到,获得积分10
17秒前
快乐的千秋完成签到,获得积分10
18秒前
yz完成签到,获得积分10
19秒前
薰衣草发布了新的文献求助10
19秒前
19秒前
懂得珍惜发布了新的文献求助10
19秒前
袁大头发布了新的文献求助10
21秒前
陈文文完成签到 ,获得积分10
22秒前
田様应助诚心的电话采纳,获得10
22秒前
23秒前
薰衣草完成签到,获得积分10
23秒前
24秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137238
求助须知:如何正确求助?哪些是违规求助? 2788358
关于积分的说明 7785777
捐赠科研通 2444399
什么是DOI,文献DOI怎么找? 1299897
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023