Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study

生命银行 心力衰竭 人口 医学 心房颤动 内科学 机器学习 人工智能 生物信息学 计算机科学 生物 环境卫生
作者
Amitava Banerjee,Ashkan Dashtban,Suliang Chen,Laura Pasea,Johan H. Thygesen,Ghazaleh Fatemifar,Lukas Habegger,Tomasz Dyszynski,Folkert W. Asselbergs,Lars H. Lund,R Thomas Lumbers,Spiros Denaxas,Harry Hemingway
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:5 (6): e370-e379 被引量:16
标识
DOI:10.1016/s2589-7500(23)00065-1
摘要

BackgroundMachine learning has been used to analyse heart failure subtypes, but not across large, distinct, population-based datasets, across the whole spectrum of causes and presentations, or with clinical and non-clinical validation by different machine learning methods. Using our published framework, we aimed to discover heart failure subtypes and validate them upon population representative data.MethodsIn this external, prognostic, and genetic validation study we analysed individuals aged 30 years or older with incident heart failure from two population-based databases in the UK (Clinical Practice Research Datalink [CPRD] and The Health Improvement Network [THIN]) from 1998 to 2018. Pre-heart failure and post-heart failure factors (n=645) included demographic information, history, examination, blood laboratory values, and medications. We identified subtypes using four unsupervised machine learning methods (K-means, hierarchical, K-Medoids, and mixture model clustering) with 87 of 645 factors in each dataset. We evaluated subtypes for (1) external validity (across datasets); (2) prognostic validity (predictive accuracy for 1-year mortality); and (3) genetic validity (UK Biobank), association with polygenic risk score (PRS) for heart failure-related traits (n=11), and single nucleotide polymorphisms (n=12).FindingsWe included 188 800, 124 262, and 9573 individuals with incident heart failure from CPRD, THIN, and UK Biobank, respectively, between Jan 1, 1998, and Jan 1, 2018. After identifying five clusters, we labelled heart failure subtypes as (1) early onset, (2) late onset, (3) atrial fibrillation related, (4) metabolic, and (5) cardiometabolic. In the external validity analysis, subtypes were similar across datasets (c-statistics: THIN model in CPRD ranged from 0·79 [subtype 3] to 0·94 [subtype 1], and CPRD model in THIN ranged from 0·79 [subtype 1] to 0·92 [subtypes 2 and 5]). In the prognostic validity analysis, 1-year all-cause mortality after heart failure diagnosis (subtype 1 0·20 [95% CI 0·14–0·25], subtype 2 0·46 [0·43–0·49], subtype 3 0·61 [0·57–0·64], subtype 4 0·11 [0·07–0·16], and subtype 5 0·37 [0·32–0·41]) differed across subtypes in CPRD and THIN data, as did risk of non-fatal cardiovascular diseases and all-cause hospitalisation. In the genetic validity analysis the atrial fibrillation-related subtype showed associations with the related PRS. Late onset and cardiometabolic subtypes were the most similar and strongly associated with PRS for hypertension, myocardial infarction, and obesity (p<0·0009). We developed a prototype app for routine clinical use, which could enable evaluation of effectiveness and cost-effectiveness.InterpretationAcross four methods and three datasets, including genetic data, in the largest study of incident heart failure to date, we identified five machine learning-informed subtypes, which might inform aetiological research, clinical risk prediction, and the design of heart failure trials.FundingEuropean Union Innovative Medicines Initiative-2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
vvvvvv发布了新的文献求助10
1秒前
番茄爱喝粥完成签到,获得积分10
1秒前
二十五发布了新的文献求助10
1秒前
逍遥完成签到,获得积分10
1秒前
1秒前
传奇3应助梁小氓采纳,获得10
1秒前
Lucas应助超帅的又槐采纳,获得10
1秒前
虚心代丝完成签到,获得积分10
2秒前
深情安青应助王梓萌采纳,获得10
2秒前
ding应助Zhong采纳,获得10
2秒前
Tian发布了新的文献求助30
2秒前
汪汪发布了新的文献求助10
3秒前
开心发布了新的文献求助10
3秒前
CodeCraft应助伶俐的星月采纳,获得10
3秒前
和谐的芷天完成签到,获得积分10
4秒前
星辰大海应助美丽的又菡采纳,获得10
4秒前
和谐代灵完成签到,获得积分10
5秒前
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
ADDDGDD完成签到,获得积分10
6秒前
6秒前
苗条的平松完成签到,获得积分10
6秒前
情怀应助风趣的凝雁采纳,获得10
7秒前
流沙完成签到 ,获得积分10
7秒前
赵俊博完成签到,获得积分10
8秒前
然12138完成签到,获得积分10
8秒前
8秒前
科目三应助灵魂采纳,获得10
9秒前
9秒前
9秒前
可爱的函函应助橙子采纳,获得10
10秒前
王梓萌完成签到,获得积分10
10秒前
Zhong完成签到,获得积分10
10秒前
缓慢莫茗发布了新的文献求助10
10秒前
白三烯完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
fd163c发布了新的文献求助20
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002