Multi-objective optimization for high-performance Fe-based metallic glasses via machine learning approach

多目标优化 材料科学 人工神经网络 帕累托原理 计算机科学 可塑性 合金 数学优化 机器学习 数学 冶金 复合材料
作者
Yuxing Zhang,She-Juan Xie,Wei Guo,Jun Ding,Leong Hien Poh,Zhen-Dong Sha
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:960: 170793-170793 被引量:4
标识
DOI:10.1016/j.jallcom.2023.170793
摘要

Fe-based metallic glasses (MGs) are a class of promising soft magnetic materials that have received great attention in transformer industries. However, it is challenging to achieve a balance between saturation magnetization (Bs), glass-forming ability and plasticity due to their contradictory correlations in Fe-based MGs, which severely hinders the development of new Fe-based MGs with advanced performances. Inspired by the significant development in machine learning technology, we herein propose a multi-objective optimization strategy to search for Fe-based MGs with optimal combinations of critical casting size (Dmax), Bs, and plasticity. The objective functions are built in combination with neural network models for predicting Dmax and Bs, as well as empirical formula for plasticity. The effect of number of hidden layers is investigated and the dropout regularization method employed to improve the prediction performance. Our results show that the predictions of Bs and Dmax by using alloy composition as the sole input perform well, as evidenced by their r2 values of 0.963 and 0.874, respectively. Multi-objective optimization based on the genetic algorithm is executed to obtain the Pareto front and Pareto-optimal solutions. The Pareto-optimal alloys predicted for the Fe83C1BxSiyP16-x-y and FexCoyNi72-x-yB19.2Si4.8Nb4 systems are in good agreement with those reported in experiments. This work thus showcases potential applications for the design of high-performance Fe-MGs against conflicting objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
听说完成签到,获得积分10
2秒前
3秒前
mengguzai发布了新的文献求助10
3秒前
ZYH发布了新的文献求助10
5秒前
cong315发布了新的文献求助10
7秒前
hhm完成签到,获得积分10
8秒前
8秒前
lingua发布了新的文献求助200
9秒前
天天快乐应助之昂采纳,获得10
10秒前
善学以致用应助陶醉觅夏采纳,获得10
10秒前
sldelibra发布了新的文献求助10
10秒前
fxx发布了新的文献求助10
13秒前
传奇3应助否认冶游史采纳,获得10
14秒前
16秒前
ZYH完成签到,获得积分20
17秒前
义气的巨人完成签到,获得积分10
18秒前
mengguzai完成签到,获得积分10
19秒前
陶醉觅夏发布了新的文献求助10
22秒前
李健应助小马采纳,获得30
24秒前
酷波er应助TXH采纳,获得10
25秒前
27秒前
27秒前
义气思雁完成签到 ,获得积分10
30秒前
33秒前
34秒前
汉堡包应助ZYH采纳,获得10
34秒前
37秒前
37秒前
高高的茹妖完成签到,获得积分20
38秒前
好大一个赣宝完成签到,获得积分10
40秒前
CYGX关注了科研通微信公众号
40秒前
搜集达人应助风趣的惜天采纳,获得10
40秒前
TXH发布了新的文献求助10
41秒前
可靠小凝完成签到 ,获得积分10
41秒前
小马发布了新的文献求助30
41秒前
NJUSTJAY完成签到,获得积分10
42秒前
烂漫的煎饼完成签到 ,获得积分10
44秒前
NJUSTJAY发布了新的文献求助10
45秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166263
求助须知:如何正确求助?哪些是违规求助? 2817737
关于积分的说明 7917349
捐赠科研通 2477256
什么是DOI,文献DOI怎么找? 1319439
科研通“疑难数据库(出版商)”最低求助积分说明 632470
版权声明 602415