Multi-objective optimization for high-performance Fe-based metallic glasses via machine learning approach

多目标优化 材料科学 人工神经网络 帕累托原理 计算机科学 可塑性 合金 数学优化 机器学习 数学 冶金 复合材料
作者
Yuxing Zhang,She-Juan Xie,Wei Guo,Jun Ding,Leong Hien Poh,Zhen-Dong Sha
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:960: 170793-170793 被引量:4
标识
DOI:10.1016/j.jallcom.2023.170793
摘要

Fe-based metallic glasses (MGs) are a class of promising soft magnetic materials that have received great attention in transformer industries. However, it is challenging to achieve a balance between saturation magnetization (Bs), glass-forming ability and plasticity due to their contradictory correlations in Fe-based MGs, which severely hinders the development of new Fe-based MGs with advanced performances. Inspired by the significant development in machine learning technology, we herein propose a multi-objective optimization strategy to search for Fe-based MGs with optimal combinations of critical casting size (Dmax), Bs, and plasticity. The objective functions are built in combination with neural network models for predicting Dmax and Bs, as well as empirical formula for plasticity. The effect of number of hidden layers is investigated and the dropout regularization method employed to improve the prediction performance. Our results show that the predictions of Bs and Dmax by using alloy composition as the sole input perform well, as evidenced by their r2 values of 0.963 and 0.874, respectively. Multi-objective optimization based on the genetic algorithm is executed to obtain the Pareto front and Pareto-optimal solutions. The Pareto-optimal alloys predicted for the Fe83C1BxSiyP16-x-y and FexCoyNi72-x-yB19.2Si4.8Nb4 systems are in good agreement with those reported in experiments. This work thus showcases potential applications for the design of high-performance Fe-MGs against conflicting objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dulong完成签到,获得积分10
1秒前
落寞电灯胆完成签到,获得积分10
1秒前
哈哈哈完成签到 ,获得积分10
1秒前
月亮完成签到 ,获得积分10
2秒前
dd完成签到,获得积分10
3秒前
yanyimeng完成签到,获得积分10
3秒前
既白完成签到 ,获得积分10
5秒前
6秒前
CipherSage应助贪玩的书南采纳,获得10
7秒前
冷艳的白竹完成签到,获得积分10
7秒前
刀锋完成签到,获得积分10
8秒前
慕青应助LL爱读书采纳,获得10
8秒前
优秀醉易完成签到,获得积分10
9秒前
思源应助大方的八宝粥采纳,获得10
11秒前
boxi完成签到 ,获得积分10
11秒前
12秒前
复杂念梦完成签到 ,获得积分10
12秒前
沈坤发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
19秒前
19秒前
汤圆完成签到,获得积分10
20秒前
20秒前
22秒前
追寻的山晴完成签到,获得积分10
22秒前
22秒前
jessiefuli完成签到,获得积分20
24秒前
一只睿智Cat完成签到 ,获得积分20
25秒前
25秒前
26秒前
Akim应助深情的保温杯采纳,获得10
28秒前
MOLLY完成签到,获得积分10
28秒前
gxzsdf完成签到 ,获得积分10
29秒前
31秒前
俞安珊完成签到,获得积分10
31秒前
Yuan完成签到 ,获得积分10
31秒前
33秒前
wan完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993