Multi-objective optimization for high-performance Fe-based metallic glasses via machine learning approach

多目标优化 材料科学 人工神经网络 帕累托原理 计算机科学 可塑性 合金 数学优化 机器学习 数学 冶金 复合材料
作者
Yuxing Zhang,She-Juan Xie,Wei Guo,Jun Ding,Leong Hien Poh,Zhen-Dong Sha
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:960: 170793-170793 被引量:9
标识
DOI:10.1016/j.jallcom.2023.170793
摘要

Fe-based metallic glasses (MGs) are a class of promising soft magnetic materials that have received great attention in transformer industries. However, it is challenging to achieve a balance between saturation magnetization (Bs), glass-forming ability and plasticity due to their contradictory correlations in Fe-based MGs, which severely hinders the development of new Fe-based MGs with advanced performances. Inspired by the significant development in machine learning technology, we herein propose a multi-objective optimization strategy to search for Fe-based MGs with optimal combinations of critical casting size (Dmax), Bs, and plasticity. The objective functions are built in combination with neural network models for predicting Dmax and Bs, as well as empirical formula for plasticity. The effect of number of hidden layers is investigated and the dropout regularization method employed to improve the prediction performance. Our results show that the predictions of Bs and Dmax by using alloy composition as the sole input perform well, as evidenced by their r2 values of 0.963 and 0.874, respectively. Multi-objective optimization based on the genetic algorithm is executed to obtain the Pareto front and Pareto-optimal solutions. The Pareto-optimal alloys predicted for the Fe83C1BxSiyP16-x-y and FexCoyNi72-x-yB19.2Si4.8Nb4 systems are in good agreement with those reported in experiments. This work thus showcases potential applications for the design of high-performance Fe-MGs against conflicting objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
刚刚
17876581310完成签到 ,获得积分10
刚刚
Stella应助Album采纳,获得30
刚刚
Azura完成签到,获得积分10
刚刚
1秒前
田様应助科研通管家采纳,获得10
1秒前
尼斯湖水怪完成签到,获得积分20
1秒前
dl应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
2秒前
金枪鱼发布了新的文献求助10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
轻松的冰淇淋完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
3秒前
Camus发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
hhy发布了新的文献求助10
4秒前
研友_ngKVVn完成签到,获得积分10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
4秒前
大聪明应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得30
5秒前
kaka发布了新的文献求助10
5秒前
jiuzhege完成签到 ,获得积分10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
6秒前
CipherSage应助奔奔采纳,获得10
6秒前
enen发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
zzk发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644