Diffusion-based structural connectivity patterns of multiple sclerosis phenotypes

多发性硬化 部分各向异性 磁共振弥散成像 临床孤立综合征 表型 纤维束成像 医学 神经科学 生物 磁共振成像 放射科 基因 遗传学 精神科
作者
Eloy Martínez‐Heras,Elisabeth Solana,Francesc Vivó,Elisabet López-Soley,Alberto Calvi,Salut Alba-Arbalat,Menno M. Schoonheim,Eva Strijbis,Hugo Vrenken,Frederik Barkhof,Maria A. Rocca,Massimo Filippi,Elisabetta Pagani,Sergiu Groppa,Vinzenz Fleischer,Robert A. Dineen,Barbara Bellenberg,Carsten Lukas,Deborah Pareto,Àlex Rovira,Jaume Sastre‐Garriga,Sara Collorone,Ferran Prados Carrasco,Ahmed Toosy,Olga Ciccarelli,Albert Sáiz,Yolanda Blanco,Sara Llufriú
出处
期刊:Journal of Neurology, Neurosurgery, and Psychiatry [BMJ]
卷期号:94 (11): 916-923 被引量:1
标识
DOI:10.1136/jnnp-2023-331531
摘要

We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes.Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups.Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes.In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月白发布了新的文献求助10
刚刚
π.完成签到,获得积分10
1秒前
1秒前
李健应助长情洙采纳,获得10
1秒前
1秒前
科研小白完成签到,获得积分10
2秒前
2秒前
RandyD发布了新的文献求助10
2秒前
2秒前
最最最发布了新的文献求助10
2秒前
3秒前
π.发布了新的文献求助10
3秒前
4秒前
yangyangyang发布了新的文献求助10
4秒前
siccy完成签到 ,获得积分10
4秒前
图南关注了科研通微信公众号
5秒前
我是老大应助Mrrr采纳,获得10
5秒前
ZTT发布了新的文献求助10
5秒前
调皮的凝旋完成签到,获得积分10
5秒前
JiangY完成签到,获得积分10
5秒前
妮妮爱smile完成签到,获得积分10
6秒前
咕噜仔发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助King16采纳,获得10
7秒前
lyn发布了新的文献求助10
7秒前
瑰夏完成签到,获得积分20
7秒前
喜洋洋发布了新的文献求助10
7秒前
ZL发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
7秒前
7秒前
顺利的爆米花完成签到 ,获得积分10
8秒前
沉静秋尽完成签到,获得积分10
8秒前
大个应助沉静的颦采纳,获得10
8秒前
657完成签到 ,获得积分10
8秒前
8秒前
执念完成签到 ,获得积分10
9秒前
ECCE713完成签到,获得积分10
9秒前
小刺完成签到,获得积分10
9秒前
sweetbearm应助zxl采纳,获得10
9秒前
优秀的盼夏完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759