Multi-fault classification of rotor systems based on phase feature of axis trajectory in noisy environments

弹道 控制理论(社会学) 转子(电动) 特征(语言学) 振动 振幅 断层(地质) 计算机科学 特征提取 瞬时相位 直升机旋翼 相(物质) 谐波 人工智能 算法 模式识别(心理学) 物理 声学 计算机视觉 光学 地质学 哲学 滤波器(信号处理) 地震学 量子力学 语言学 控制(管理) 天文
作者
Chunrong Hua,Libo Xiong,Lumei Lv,Dawei Dong,Huajiang Ouyang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (2): 924-944 被引量:1
标识
DOI:10.1177/14759217231178652
摘要

As it is difficult to distinguish multiple rotor faults with similar dynamic phenomena in noisy environments, a multi-fault classification method is proposed by combining the extracted trajectory phase feature, a parameter-optimized variational mode decomposition (VMD) method and a light gradient boosting machine (LightGBM) model. The trajectory phase feature is extracted from an axis trajectory by fusing the frequency, amplitude, and phase information related to rotor motion and can comprehensively describe the dynamic characteristics induced by different rotor faults. First, the vibration displacement signals in two orthogonal directions are collected to construct the axis trajectories with 12 rotor states including healthy, unbalance, misalignment, single crack, multiple cracks, and a mixture of them. Second, the trajectory phase feature is extracted from the vectorized axis trajectories, and the frequency spectra of trajectory phase angles under different rotor faults are analyzed through Fourier transform. Finally, a parameter-optimized VMD method combined with a LightGBM model is applied to classify multiple faults of rotor systems in different noisy environments based on the extracted trajectory phase feature. The 12 rotor states can be classified into nine categories based on the harmonic information of 1X–7X components (X is the rotating frequency of a rotor system) and other components with smaller amplitudes in the frequency spectra of trajectory phase angles. The average classification accuracy of the 12 rotor states exceeds 93.0%, and the recognition rate for each kind of fault is greater than 77.5% in noisy environments. The simulated and experimental results demonstrate the effectiveness and adaptability of the proposed multi-fault classification method. This work can provide a reference for the condition monitoring and fault diagnosis of rotor systems in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yimu完成签到,获得积分10
刚刚
香妃完成签到,获得积分10
1秒前
1秒前
深情安青应助灿cancan采纳,获得10
1秒前
丑儿完成签到,获得积分10
2秒前
2秒前
燕知南发布了新的文献求助10
3秒前
纯真雁菱完成签到,获得积分10
4秒前
4秒前
Davy_Y发布了新的文献求助10
5秒前
yimu发布了新的文献求助10
5秒前
zyz953398531发布了新的文献求助10
6秒前
西子阳发布了新的文献求助10
7秒前
7秒前
欢呼曼荷完成签到,获得积分10
7秒前
uvk完成签到,获得积分10
8秒前
8秒前
尔东发布了新的文献求助10
8秒前
南村群童欺我老无力完成签到,获得积分10
10秒前
freshman3005发布了新的文献求助30
10秒前
迢迢星河万里完成签到,获得积分10
11秒前
zyz953398531完成签到,获得积分20
11秒前
无水乙醚完成签到,获得积分10
11秒前
小武wwwww发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
13秒前
专注的曼卉完成签到,获得积分10
13秒前
King强完成签到,获得积分10
14秒前
14秒前
14秒前
爱游泳的鱼完成签到,获得积分10
14秒前
15秒前
16秒前
CNSSCI发布了新的文献求助10
16秒前
爆米花应助陈哈哈采纳,获得10
16秒前
18秒前
Yy发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156020
求助须知:如何正确求助?哪些是违规求助? 2807409
关于积分的说明 7872961
捐赠科研通 2465760
什么是DOI,文献DOI怎么找? 1312375
科研通“疑难数据库(出版商)”最低求助积分说明 630083
版权声明 601905