A novel geometric feature-based wood-leaf separation method for large and crown-heavy tropical trees using handheld laser scanning point cloud

点云 牙冠(牙科) 稳健性(进化) 热带森林 热带气候 数学 计算机科学 遥感 人工智能 材料科学 生态学 生物 地质学 复合材料 基因 生物化学
作者
Meilian Wang,Man Sing Wong
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (10): 3227-3258 被引量:1
标识
DOI:10.1080/01431161.2023.2217981
摘要

As the prerequisite of non-destructively measuring structural parameters and leaf distribution, wood-leaf separation plays an essential role in forest inventories. However, fewer studies focus on the separation and measurement of large tropical trees with heavy crowns and complex branch structures. This study proposed a novel method to automatically separate the leaf and wood points of large tropical trees based on geometric features. Instead of identifying all wood points using the same rules, we used different methods to separate small and large wood components, respectively. The identification of small wood components was implemented mainly by the differences in point density and linear distribution pattern between leaf and wood points, while the identification of large wood components was implemented through the comprehensive analysis of verticality, linearity, anisotropy, as well as point density. To improve the separation accuracy and implementation effectiveness, the segment-wise and point-wise methods were combined in this study. The robustness and generalization of the proposed method were tested using two datasets, i.e. twenty large tropical trees with heavy crowns and twenty-four general tropical trees without heavy crowns. The separation results verified that the proposed method could achieve good separation of wood and leaf points of large crown-heavy tropical trees with the accuracy of up to 91.5%. The highest separation accuracy of general tropical trees was about 95.03%. The examination of the tropical trees without heavy crowns demonstrated that the proposed method has promising robustness and generalization ability. In addition, to fill the gap in the large tropical tree point clouds, an open-source dataset library was built for the wood-leaf separation research, including manually labelled 20 large crown-heavy tropical trees with different types of branch structures and basic structural parameters of each tree (tree height, crown spread, and diameter at the breast height (DBH)).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助浅梦采纳,获得10
2秒前
3秒前
毛毛发布了新的文献求助10
5秒前
zzzdx发布了新的文献求助10
5秒前
5秒前
西部森林完成签到,获得积分10
6秒前
6秒前
chen发布了新的文献求助10
7秒前
qiqi77ya完成签到,获得积分10
7秒前
合适的致远完成签到,获得积分10
8秒前
8秒前
刘佳佳完成签到 ,获得积分10
8秒前
9秒前
dasfdufos发布了新的文献求助10
10秒前
Annie发布了新的文献求助10
11秒前
CipherSage应助WU采纳,获得10
11秒前
12秒前
韧战发布了新的文献求助10
13秒前
13秒前
咕噜咕噜噜熊完成签到,获得积分10
13秒前
炙热短靴发布了新的文献求助10
14秒前
呃呃呃c发布了新的文献求助10
14秒前
谨慎建辉发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
脑洞疼应助1sxc采纳,获得10
18秒前
20秒前
chen完成签到,获得积分10
20秒前
321完成签到 ,获得积分10
21秒前
21秒前
传奇3应助zzzdx采纳,获得10
21秒前
orixero应助王景晨采纳,获得10
21秒前
绵绵发布了新的文献求助10
22秒前
YZ发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
传奇3应助孤独曲奇采纳,获得10
24秒前
刘家成发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288858
求助须知:如何正确求助?哪些是违规求助? 4440637
关于积分的说明 13825255
捐赠科研通 4322964
什么是DOI,文献DOI怎么找? 2372842
邀请新用户注册赠送积分活动 1368324
关于科研通互助平台的介绍 1332194