A novel geometric feature-based wood-leaf separation method for large and crown-heavy tropical trees using handheld laser scanning point cloud

点云 牙冠(牙科) 稳健性(进化) 热带森林 热带气候 数学 计算机科学 遥感 人工智能 材料科学 生态学 生物 地质学 复合材料 生物化学 基因
作者
Meilian Wang,Man Sing Wong
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (10): 3227-3258 被引量:1
标识
DOI:10.1080/01431161.2023.2217981
摘要

As the prerequisite of non-destructively measuring structural parameters and leaf distribution, wood-leaf separation plays an essential role in forest inventories. However, fewer studies focus on the separation and measurement of large tropical trees with heavy crowns and complex branch structures. This study proposed a novel method to automatically separate the leaf and wood points of large tropical trees based on geometric features. Instead of identifying all wood points using the same rules, we used different methods to separate small and large wood components, respectively. The identification of small wood components was implemented mainly by the differences in point density and linear distribution pattern between leaf and wood points, while the identification of large wood components was implemented through the comprehensive analysis of verticality, linearity, anisotropy, as well as point density. To improve the separation accuracy and implementation effectiveness, the segment-wise and point-wise methods were combined in this study. The robustness and generalization of the proposed method were tested using two datasets, i.e. twenty large tropical trees with heavy crowns and twenty-four general tropical trees without heavy crowns. The separation results verified that the proposed method could achieve good separation of wood and leaf points of large crown-heavy tropical trees with the accuracy of up to 91.5%. The highest separation accuracy of general tropical trees was about 95.03%. The examination of the tropical trees without heavy crowns demonstrated that the proposed method has promising robustness and generalization ability. In addition, to fill the gap in the large tropical tree point clouds, an open-source dataset library was built for the wood-leaf separation research, including manually labelled 20 large crown-heavy tropical trees with different types of branch structures and basic structural parameters of each tree (tree height, crown spread, and diameter at the breast height (DBH)).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
土豆发布了新的文献求助10
1秒前
贲从蓉完成签到,获得积分20
3秒前
3秒前
乔威完成签到,获得积分10
4秒前
褚洙发布了新的文献求助10
5秒前
5秒前
karry完成签到,获得积分10
5秒前
科研通AI2S应助龙泪个萌乃采纳,获得10
6秒前
pcr163应助Migue采纳,获得200
6秒前
Aaaapear完成签到,获得积分10
6秒前
6秒前
在水一方应助1111采纳,获得10
7秒前
贲从蓉发布了新的文献求助10
7秒前
土豆完成签到,获得积分10
9秒前
共享精神应助huiwanfeifei采纳,获得10
9秒前
KLM发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
11秒前
在水一方应助大花卷采纳,获得10
12秒前
科研通AI2S应助567采纳,获得10
14秒前
小李完成签到,获得积分10
17秒前
hjgg完成签到,获得积分10
18秒前
18秒前
小蘑菇应助逢投必中采纳,获得10
18秒前
科研小能手完成签到,获得积分10
19秒前
19秒前
赵油油发布了新的文献求助10
20秒前
LJ完成签到,获得积分10
20秒前
21秒前
缥缈幻桃发布了新的文献求助10
22秒前
hxksxc发布了新的文献求助50
23秒前
栗悟饭完成签到,获得积分10
23秒前
爱喝酸奶发布了新的文献求助10
24秒前
LJ发布了新的文献求助10
24秒前
所所应助橙子橙子橙子采纳,获得10
25秒前
大花卷发布了新的文献求助10
26秒前
搜集达人应助赵油油采纳,获得10
30秒前
缥缈幻桃完成签到,获得积分20
32秒前
Lucas应助野原向日葵采纳,获得10
33秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157474
求助须知:如何正确求助?哪些是违规求助? 2808881
关于积分的说明 7878865
捐赠科研通 2467299
什么是DOI,文献DOI怎么找? 1313327
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919