Bandwidth-aware adaptive chirp mode decomposition for railway bearing fault diagnosis

啁啾声 带宽(计算) 振动 方位(导航) 计算机科学 信号(编程语言) 电子工程 过滤器组 频带 控制理论(社会学) 滤波器(信号处理) 工程类 声学 物理 电信 人工智能 程序设计语言 光学 激光器 控制(管理) 计算机视觉
作者
Shiqian Chen,Lanping Guo,Junfeng Fan,Yi Cai,Kaiyun Wang,Wanming Zhai
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:: 147592172311746-147592172311746
标识
DOI:10.1177/14759217231174699
摘要

It is a challenging task to accurately diagnose a railway bearing fault since bearing vibration signals are under strong interferences from wheel–rail excitations. The commonly used Kurtogram-based methods are often trapped in components induced by the wheel–rail excitations while adaptive mode decomposition methods are sensitive to input control parameters. To address these issues, based on a recently developed powerful signal decomposition method, that is, adaptive chirp mode decomposition (ACMD), a novel method called bandwidth-aware ACMD (BA-ACMD) is proposed in this article. First, the filter bank property of ACMD is thoroughly analyzed based on Monte-Carlo simulation and then a bandwidth expression with respect to the penalty parameter is first obtained by fitting a power law model. Then, a weighted spectrum trend (WST) method is proposed to partition frequency bands and then guide the parameter determination of ACMD through the integration of the obtained bandwidth expression. In addition, according to the order of magnitude of the WST in each band, the BA-ACMD adopts a recursive framework to extract signal modes one by one. In this way, dominating signal modes related to wheel–rail excitations can be extracted and then subtracted from the vibration signal in advance so that the bearing faults induced signal modes can be successfully identified. Both simulation and experimental validations are conducted showing that BA-ACMD can effectively detect single and compound faults of railway bearings under strong wheel–rail excitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hsy111发布了新的文献求助10
刚刚
明理小土豆完成签到,获得积分10
1秒前
weiwei发布了新的文献求助10
1秒前
小巧的乌完成签到,获得积分10
1秒前
ash发布了新的文献求助10
2秒前
2秒前
121发布了新的文献求助10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
tianzml0应助科研通管家采纳,获得10
3秒前
3秒前
修仙应助科研通管家采纳,获得10
4秒前
遥远的尧应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Lvhao应助科研通管家采纳,获得10
4秒前
可爱的函函应助遇见渔火采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
zho应助科研通管家采纳,获得10
4秒前
tianzml0应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
Singularity应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
zho应助科研通管家采纳,获得10
4秒前
5秒前
小巧的乌发布了新的文献求助10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
桐桐应助huazi采纳,获得10
5秒前
夏青荷发布了新的文献求助10
5秒前
6秒前
科研通AI2S应助twb采纳,获得10
8秒前
szy应助LRF采纳,获得10
8秒前
ajin完成签到,获得积分10
9秒前
祝愿完成签到 ,获得积分10
9秒前
甜甜的半仙完成签到 ,获得积分10
9秒前
10秒前
汉堡包应助李白采纳,获得10
10秒前
Jasper应助爱听歌契采纳,获得10
10秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234