Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy

初始化 特征选择 人工智能 人口 计算机科学 局部最优 模式识别(心理学) 特征(语言学) 分类器(UML) 水准点(测量) 数学优化 数学 人口学 社会学 哲学 程序设计语言 地理 语言学 大地测量学
作者
Xiaobo Li,Qiyong Fu,Qi Li,Weiping Ding,Feilong Lin,Zhonglong Zheng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:145: 110558-110558 被引量:13
标识
DOI:10.1016/j.asoc.2023.110558
摘要

Feature selection aims to choose a subset of features with minimal feature-feature correlation and maximum feature-class correlation, which can be considered as a multi-objective problem. Grey wolf optimization mimics the leadership hierarchy and group hunting mechanism of grey wolves in nature. However, it can easily fall into local optimization in multi-objective optimization. To address this, a novel multi-objective binary grey wolf optimization based on a guided mutation strategy (GMS), called MOBGWO-GMS, is proposed. In the initialization phase, the population is initialized based on feature correlation, and features are selected using a uniform operator. The proposed GMS uses the Pearson correlation coefficient to provide direction for local search, improving the local exploration ability of the population. Moreover, a dynamic agitation mechanism is used for perturbation to prevent population stagnation due to the use of a single strategy. The strategy is dynamically adjusted to maintain population diversity and improve detection ability. To evaluate the classification ability of quasi-optimal subsets, a wrapper-based k-nearest neighbor classifier was employed. The effectiveness of the proposed algorithm was demonstrated through an extensive comparison with eight well-known algorithms on fourteen benchmark datasets. Experimental results showed that the proposed approach is superior in the optimal trade-off between the two fitness evaluation criteria and can easily jump out of local optima compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lianna发布了新的文献求助10
1秒前
2秒前
美好翠梅完成签到,获得积分10
3秒前
yyl发布了新的文献求助10
3秒前
司纤户羽发布了新的文献求助10
4秒前
Owen应助阿尔法a采纳,获得10
5秒前
小马甲应助温暖的紫寒采纳,获得10
5秒前
bkagyin应助lvsehx采纳,获得10
6秒前
Anthony完成签到,获得积分10
7秒前
8秒前
8秒前
liyun发布了新的文献求助10
8秒前
8秒前
zxzxzx完成签到,获得积分10
12秒前
12秒前
12秒前
xunl发布了新的文献求助10
13秒前
13秒前
乐乐应助Singularity采纳,获得10
13秒前
善良的翼发布了新的文献求助10
13秒前
wenlong完成签到 ,获得积分10
14秒前
eilis发布了新的文献求助10
14秒前
科研通AI2S应助笑点低的yj采纳,获得10
15秒前
景溪灵发布了新的文献求助10
15秒前
LiuShenglan发布了新的文献求助10
15秒前
华仔应助玥儿采纳,获得10
16秒前
gggw关注了科研通微信公众号
16秒前
zz发布了新的文献求助10
16秒前
17秒前
Cici完成签到,获得积分10
18秒前
18秒前
Zzz发布了新的文献求助10
18秒前
20秒前
巧克力饼干完成签到,获得积分10
21秒前
22秒前
暮冬十三完成签到,获得积分10
22秒前
22秒前
小小白完成签到,获得积分10
24秒前
空林饮溪发布了新的文献求助10
24秒前
jianghs完成签到,获得积分10
25秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Artificial Intelligence, Co-Creation and Creativity 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090540
求助须知:如何正确求助?哪些是违规求助? 2742640
关于积分的说明 7570941
捐赠科研通 2393267
什么是DOI,文献DOI怎么找? 1269305
科研通“疑难数据库(出版商)”最低求助积分说明 614275
版权声明 598756