Multi-objective binary grey wolf optimization for feature selection based on guided mutation strategy

初始化 特征选择 人工智能 人口 计算机科学 局部最优 模式识别(心理学) 特征(语言学) 分类器(UML) 水准点(测量) 数学优化 数学 人口学 社会学 哲学 程序设计语言 地理 语言学 大地测量学
作者
Xiaobo Li,Qiyong Fu,Qi Li,Weiping Ding,Feilong Lin,Zhonglong Zheng
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:145: 110558-110558 被引量:13
标识
DOI:10.1016/j.asoc.2023.110558
摘要

Feature selection aims to choose a subset of features with minimal feature-feature correlation and maximum feature-class correlation, which can be considered as a multi-objective problem. Grey wolf optimization mimics the leadership hierarchy and group hunting mechanism of grey wolves in nature. However, it can easily fall into local optimization in multi-objective optimization. To address this, a novel multi-objective binary grey wolf optimization based on a guided mutation strategy (GMS), called MOBGWO-GMS, is proposed. In the initialization phase, the population is initialized based on feature correlation, and features are selected using a uniform operator. The proposed GMS uses the Pearson correlation coefficient to provide direction for local search, improving the local exploration ability of the population. Moreover, a dynamic agitation mechanism is used for perturbation to prevent population stagnation due to the use of a single strategy. The strategy is dynamically adjusted to maintain population diversity and improve detection ability. To evaluate the classification ability of quasi-optimal subsets, a wrapper-based k-nearest neighbor classifier was employed. The effectiveness of the proposed algorithm was demonstrated through an extensive comparison with eight well-known algorithms on fourteen benchmark datasets. Experimental results showed that the proposed approach is superior in the optimal trade-off between the two fitness evaluation criteria and can easily jump out of local optima compared to other algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜂蜜不是糖完成签到 ,获得积分10
刚刚
狮子最爱吃芒果完成签到,获得积分10
刚刚
1秒前
2秒前
尘雾完成签到,获得积分10
2秒前
澜生发布了新的文献求助10
3秒前
leekle完成签到,获得积分10
4秒前
shengChen发布了新的文献求助10
4秒前
自信鞯发布了新的文献求助10
5秒前
江北小赵完成签到,获得积分10
5秒前
5秒前
5秒前
clock完成签到 ,获得积分10
5秒前
虫二先生完成签到 ,获得积分10
5秒前
甜甜的难敌完成签到,获得积分10
6秒前
6秒前
7秒前
小潘同学完成签到,获得积分10
7秒前
7秒前
科研通AI5应助传统的海露采纳,获得10
8秒前
学术刘亦菲完成签到,获得积分10
8秒前
成就的烧鹅完成签到,获得积分20
8秒前
9秒前
dd发布了新的文献求助10
9秒前
luoshi应助leon采纳,获得30
10秒前
10秒前
wang完成签到,获得积分10
10秒前
可爱的函函应助hu采纳,获得10
10秒前
10秒前
我测你码关注了科研通微信公众号
11秒前
下课了吧发布了新的文献求助10
11秒前
jy发布了新的文献求助10
11秒前
绘梨衣完成签到,获得积分10
12秒前
数据线完成签到,获得积分10
12秒前
完美世界应助甜甜的难敌采纳,获得30
13秒前
满堂花醉三千客完成签到 ,获得积分10
13秒前
13秒前
13秒前
gao完成签到,获得积分10
14秒前
LiuRuizhe完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794