A Physics-Constrained Bayesian neural network for battery remaining useful life prediction

预言 人工神经网络 电池(电) 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 数据挖掘 物理 功率(物理) 量子力学
作者
David Najera-Flores,Zhen Hu,Mayank Chadha,Michael D. Todd
出处
期刊:Applied Mathematical Modelling [Elsevier BV]
卷期号:122: 42-59 被引量:22
标识
DOI:10.1016/j.apm.2023.05.038
摘要

In order to predict the remaining useful life (RUL) of lithium-ion batteries, a capacity degradation model may be developed using either simplified physical laws or machine learning-based methods. It is observed that even though degradation models based on simplified physical laws are easy to implement, they may result in large error in the application of failure prognostics. While data-driven prognostics models can provide more accurate degradation forecasting, they may require a large volume of training data and may invoke predictions inconsistent with physical laws. It is also very challenging for existing methods to predict the RUL at the early stages of battery life. In this paper, we propose a Bayesian physics-constrained neural network for battery RUL prediction by overcoming limitations of the current methods. In the proposed method, a neural differential operator is learned from the first 100 cycles of data. The neural differential operator is modeled with a Bayesian neural network architecture that separates the fixed history dependence from the time dependence to isolate epistemic uncertainty quantification. Using the battery dataset presented in the paper by Severson et al. as an example, we compare our proposed method with a simplified physics-based degradation forecasting model and two data-driven prognostics models. The results show that the proposed physics-constrained neural network can provide more accurate RUL estimation than the other methods with the same group of training data. Most importantly, the proposed method allows for RUL prediction at earlier stages of the battery life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助无辜群众采纳,获得10
刚刚
小猛人发布了新的文献求助10
刚刚
1秒前
pluto应助卡拉米采纳,获得10
1秒前
2秒前
脑洞疼应助希夷采纳,获得10
2秒前
独特背包完成签到,获得积分10
2秒前
3秒前
5秒前
美满艳完成签到,获得积分10
5秒前
DAN_完成签到,获得积分10
5秒前
金铭发布了新的文献求助30
6秒前
zakery发布了新的文献求助10
6秒前
zinc完成签到,获得积分20
6秒前
王肄博发布了新的文献求助10
7秒前
zhoushixian发布了新的文献求助10
7秒前
幻心发布了新的文献求助10
8秒前
Hello应助影子采纳,获得10
8秒前
8秒前
你可真下饭完成签到 ,获得积分10
8秒前
欢喜的元灵完成签到,获得积分10
9秒前
宁祚完成签到,获得积分10
9秒前
lmm完成签到,获得积分20
10秒前
13秒前
lmm发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
ding应助123456采纳,获得10
16秒前
打打应助thl采纳,获得10
17秒前
Daniel.Wu完成签到,获得积分10
19秒前
栗子完成签到,获得积分10
19秒前
科研通AI5应助顺心的毛巾采纳,获得10
19秒前
缓慢夜阑发布了新的文献求助10
19秒前
20秒前
Dale完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756772
求助须知:如何正确求助?哪些是违规求助? 3300172
关于积分的说明 10112715
捐赠科研通 3014700
什么是DOI,文献DOI怎么找? 1655670
邀请新用户注册赠送积分活动 790049
科研通“疑难数据库(出版商)”最低求助积分说明 753552