A Physics-Constrained Bayesian neural network for battery remaining useful life prediction

预言 人工神经网络 电池(电) 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 数据挖掘 物理 功率(物理) 量子力学
作者
David Najera-Flores,Zhen Hu,Mayank Chadha,Michael D. Todd
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:122: 42-59 被引量:17
标识
DOI:10.1016/j.apm.2023.05.038
摘要

In order to predict the remaining useful life (RUL) of lithium-ion batteries, a capacity degradation model may be developed using either simplified physical laws or machine learning-based methods. It is observed that even though degradation models based on simplified physical laws are easy to implement, they may result in large error in the application of failure prognostics. While data-driven prognostics models can provide more accurate degradation forecasting, they may require a large volume of training data and may invoke predictions inconsistent with physical laws. It is also very challenging for existing methods to predict the RUL at the early stages of battery life. In this paper, we propose a Bayesian physics-constrained neural network for battery RUL prediction by overcoming limitations of the current methods. In the proposed method, a neural differential operator is learned from the first 100 cycles of data. The neural differential operator is modeled with a Bayesian neural network architecture that separates the fixed history dependence from the time dependence to isolate epistemic uncertainty quantification. Using the battery dataset presented in the paper by Severson et al. as an example, we compare our proposed method with a simplified physics-based degradation forecasting model and two data-driven prognostics models. The results show that the proposed physics-constrained neural network can provide more accurate RUL estimation than the other methods with the same group of training data. Most importantly, the proposed method allows for RUL prediction at earlier stages of the battery life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
于浩完成签到,获得积分10
2秒前
ganzhongxin发布了新的文献求助10
3秒前
Neon0524完成签到 ,获得积分10
3秒前
4秒前
爱撒娇的曼凝完成签到,获得积分10
4秒前
丘比特应助谦让平安采纳,获得10
6秒前
6秒前
7秒前
Specification应助Lang777采纳,获得10
8秒前
8秒前
9秒前
9秒前
zhou完成签到,获得积分10
9秒前
尛瞐慶成发布了新的文献求助10
10秒前
10秒前
学不会完成签到,获得积分20
11秒前
12秒前
Yu发布了新的文献求助10
12秒前
shan发布了新的文献求助10
13秒前
姜姜发布了新的文献求助10
13秒前
14秒前
学不会发布了新的文献求助10
14秒前
纯氧发布了新的文献求助10
16秒前
17秒前
17秒前
jianning完成签到,获得积分10
17秒前
大个应助橘子采纳,获得10
18秒前
18秒前
18秒前
lanxinyue完成签到,获得积分10
18秒前
Felixsun发布了新的文献求助10
18秒前
zzz发布了新的文献求助10
19秒前
李爱国应助奔奔采纳,获得10
20秒前
黄沙漠发布了新的文献求助10
20秒前
阿白发布了新的文献求助10
20秒前
21秒前
asuit发布了新的文献求助30
22秒前
22秒前
luyee发布了新的文献求助10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596