A Physics-Constrained Bayesian neural network for battery remaining useful life prediction

预言 人工神经网络 电池(电) 人工智能 贝叶斯概率 计算机科学 机器学习 工程类 数据挖掘 物理 量子力学 功率(物理)
作者
David Najera-Flores,Zhen Hu,Mayank Chadha,Michael D. Todd
出处
期刊:Applied Mathematical Modelling [Elsevier]
卷期号:122: 42-59 被引量:17
标识
DOI:10.1016/j.apm.2023.05.038
摘要

In order to predict the remaining useful life (RUL) of lithium-ion batteries, a capacity degradation model may be developed using either simplified physical laws or machine learning-based methods. It is observed that even though degradation models based on simplified physical laws are easy to implement, they may result in large error in the application of failure prognostics. While data-driven prognostics models can provide more accurate degradation forecasting, they may require a large volume of training data and may invoke predictions inconsistent with physical laws. It is also very challenging for existing methods to predict the RUL at the early stages of battery life. In this paper, we propose a Bayesian physics-constrained neural network for battery RUL prediction by overcoming limitations of the current methods. In the proposed method, a neural differential operator is learned from the first 100 cycles of data. The neural differential operator is modeled with a Bayesian neural network architecture that separates the fixed history dependence from the time dependence to isolate epistemic uncertainty quantification. Using the battery dataset presented in the paper by Severson et al. as an example, we compare our proposed method with a simplified physics-based degradation forecasting model and two data-driven prognostics models. The results show that the proposed physics-constrained neural network can provide more accurate RUL estimation than the other methods with the same group of training data. Most importantly, the proposed method allows for RUL prediction at earlier stages of the battery life cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助孔小白采纳,获得10
2秒前
2秒前
舒适逊完成签到 ,获得积分10
2秒前
科研通AI5应助11111采纳,获得10
3秒前
CipherSage应助hxn采纳,获得10
3秒前
5秒前
深情安青应助shatang采纳,获得10
5秒前
zxx5012发布了新的文献求助10
5秒前
芥丶子完成签到,获得积分10
6秒前
曾开心完成签到,获得积分10
6秒前
平淡南霜发布了新的文献求助10
6秒前
Blue_Pig发布了新的文献求助10
7秒前
李健的小迷弟应助逐风采纳,获得30
7秒前
yatou5651发布了新的文献求助10
8秒前
Akim应助和谐乌龟采纳,获得10
8秒前
peng完成签到,获得积分20
9秒前
CipherSage应助汉关采纳,获得10
9秒前
10秒前
10秒前
10秒前
丘比特应助XM采纳,获得10
10秒前
bkagyin应助Blue_Pig采纳,获得10
11秒前
12秒前
13秒前
13秒前
完美世界应助加油加油采纳,获得10
14秒前
14秒前
15秒前
ns发布了新的文献求助30
17秒前
11111发布了新的文献求助10
17秒前
18秒前
药学牛马完成签到,获得积分10
18秒前
张zi发布了新的文献求助10
19秒前
yatou5651发布了新的文献求助10
20秒前
20秒前
小魏不学无术完成签到,获得积分10
20秒前
木棉发布了新的文献求助10
20秒前
A1234发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808