已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Spatial Pyramid Feature and Optimizing Focal Loss Function for Object Detection

计算机科学 目标检测 人工智能 棱锥(几何) 功能(生物学) 模式识别(心理学) 特征(语言学) 对象(语法) 计算机视觉 数学 生物 几何学 语言学 进化生物学 哲学
作者
Shengye Wang,Zhong Qu,Le-yuan Gao
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:9 (1): 1054-1065 被引量:10
标识
DOI:10.1109/tiv.2023.3282996
摘要

Previous deep convolutional neural network research has made significant progress toward improving the speed and accuracy of object detection. However, despite these advancements, the inaccurate detection of multi-object (small objects) remains challenging in the traffic environments. In this article, we propose a new architecture called YOLOM, which is specifically designed to achieve enhanced multi-object (small objects) detection precision. YOLOM incorporates several innovative features: a multi-spatial pyramid (MSP), an optimized focal loss (OFLoss) function, and an objectness loss that incorporates effective intersection over union (EIoU) calculations. These features collectively yield enhanced accuracy and reduce the miss rate of small objects, particularly in the multi-object cases. According to the sizes of receptive field features with different spatial scales with pooling layers, we propose the MSP module. We optimize the focal loss as a classification function instead of the cross-entropy loss, which solves some class imbalance problems caused by anchor-free detection when encountering disparate datasets. Due to the superior performance of EIoU in confidence scoring, we use EIoU to participate in the objectness loss calculation of our work. Therefore, our method substitutes EIoU for YOLOX's objectness loss. The experimental results demonstrate that our strategies significantly outperform some end-to-end object detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨千亦发布了新的文献求助10
2秒前
淡然的舞仙完成签到 ,获得积分10
3秒前
orixero应助momo采纳,获得10
7秒前
kk完成签到,获得积分10
7秒前
9秒前
9秒前
昏睡的傲菡完成签到 ,获得积分10
10秒前
Bob关闭了Bob文献求助
12秒前
13秒前
喽喽发布了新的文献求助10
13秒前
一直向前发布了新的文献求助10
13秒前
16秒前
淡然如风完成签到,获得积分10
17秒前
17秒前
前行者发布了新的文献求助10
18秒前
18秒前
18秒前
淡然如风发布了新的文献求助10
20秒前
豆包发布了新的文献求助10
22秒前
22秒前
围炉夜话完成签到,获得积分10
23秒前
23秒前
张二发布了新的文献求助10
23秒前
Jasper应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
coolkid应助科研通管家采纳,获得10
24秒前
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
25秒前
Owen应助科研通管家采纳,获得10
25秒前
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
充电宝应助科研通管家采纳,获得10
25秒前
cf2v发布了新的文献求助10
27秒前
积极的香菇完成签到 ,获得积分10
27秒前
31秒前
所所应助bulinggu采纳,获得10
31秒前
33秒前
sky完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989832
求助须知:如何正确求助?哪些是违规求助? 3531967
关于积分的说明 11255613
捐赠科研通 3270725
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809208