Molecular mechanisms of muscle contraction: A historical perspective

提丁 肌节 肌球蛋白 肌动蛋白 肌肉收缩 收缩(语法) 肌球蛋白 肌丝 生物物理学 蛋白质丝 肌球蛋白头 化学 物理 计算机科学 解剖 生物 肌球蛋白轻链激酶 心肌细胞 细胞生物学 生物化学 内分泌学
作者
Walter Herzog,Gudrun Schappacher‐Tilp
出处
期刊:Journal of Biomechanics [Elsevier]
卷期号:155: 111659-111659 被引量:11
标识
DOI:10.1016/j.jbiomech.2023.111659
摘要

Studies of muscle structure and function can be traced to at least 2,000 years ago. However, the modern era of muscle contraction mechanisms started in the 1950s with the classic works by AF Huxley and HE Huxley, both born in the United Kingdom, but not related and working independently. HE Huxley was the first to suggest that muscle contraction occurred through the sliding of two sets of filamentous structures (actin or thin filaments and myosin or thick filaments). AF Huxley then developed a biologically inspired mathematical model suggesting a possible molecular mechanism of how this sliding of actin and myosin might take place. This model then evolved from a two-state to a multi-state model of myosin-actin interactions, and from one that suggested a linear motor causing the sliding to a rotating motor. This model, the cross-bridge model of muscle contraction, is still widely used in biomechanics, and even the more sophisticated cross-bridge models of today still contain many of the features originally proposed by AF Huxley. In 2002, we discovered a hitherto unknown property of muscle contraction that suggested the involvement of passive structures in active force production, the so-called passive force enhancement. It was quickly revealed that this passive force enhancement was caused by the filamentous protein titin, and the three-filament (actin, myosin, and titin) sarcomere model of muscle contraction evolved. There are many suggestions of how these three proteins interact to cause contraction and produce active force, and one such suggestion is described here, but the molecular details of this proposed mechanism still need careful evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助开朗熊猫采纳,获得10
1秒前
吱嗷赵发布了新的文献求助10
1秒前
zxyhhh完成签到 ,获得积分10
1秒前
霸气梦菲完成签到 ,获得积分10
1秒前
CodeCraft应助hhh采纳,获得10
1秒前
Zhaorf发布了新的文献求助10
2秒前
MRCHONG发布了新的文献求助10
2秒前
2秒前
Akim应助liuchao采纳,获得10
2秒前
动听的人英完成签到 ,获得积分10
2秒前
3秒前
coconut完成签到 ,获得积分10
3秒前
3秒前
脑洞疼应助Ll采纳,获得10
3秒前
3秒前
4秒前
Anne完成签到,获得积分10
4秒前
老迟到的凝丝完成签到,获得积分10
4秒前
金鸡奖发布了新的文献求助10
4秒前
邓邓邓妮妮子完成签到,获得积分10
4秒前
哇哈哈发布了新的文献求助10
4秒前
4秒前
andyxrz发布了新的文献求助30
5秒前
酒尚温完成签到,获得积分10
5秒前
5秒前
6秒前
Paul完成签到,获得积分10
6秒前
冰冰完成签到 ,获得积分10
6秒前
木木发布了新的文献求助10
6秒前
7秒前
涛浪完成签到,获得积分10
7秒前
上官若男应助yzy采纳,获得10
8秒前
会飞的小白完成签到,获得积分10
8秒前
8秒前
8564523发布了新的文献求助10
8秒前
珈蓝完成签到,获得积分10
9秒前
吉祥完成签到,获得积分0
9秒前
9秒前
10秒前
开心尔云完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672