Reducing Write Amplification of LSM-Tree with Block-Grained Compaction

计算机科学 压实 隐藏物 块(置换群论) 并行计算 关联数组 树(集合论) 工程类 数学 数学分析 几何学 岩土工程 人工智能
作者
Xiaoliang Wang,Peiquan Jin,Bei Hua,Hai Long,Wei Huang
标识
DOI:10.1109/icde53745.2022.00279
摘要

LSM-tree has been widely used as a write-optimized storage engine in many key-value stores, such as LevelDB and RocksDB. However, conventional compaction operations on the LSM-tree need to read, merge, and write many SSTables, which we call Table Compaction in this paper. Table Compaction will cause two major problems, namely write amplification and block-cache invalidation. They will lower both write and read performance of the LSM-tree. To address these issues, we propose a novel compaction scheme named Block Compaction that adopts a block-grained merging policy to perform compaction operations on the LSM-tree. Block Compaction identifies the boundaries of data blocks and tries to avoid reusing data blocks, which not only reduces the write amplification but also alleviates the block-cache invalidation. We present cost analysis to theoretically demonstrate that Block Compaction is more efficient than the existing Table Compaction. Furthermore, we analyze the side-effects of Block Compaction and present three optimizations: (1) Selective Compaction is to reduce the space amplification of Block Compaction by integrating Table Compaction with Block Compaction. (2) Parallel Merging divides a compaction task into several sub-tasks and uses multiple workers to accomplish sub-tasks in parallel. (3) Lazy Deletion mitigates the overhead caused by traversing files at the tail of compaction operations. We implement a new key-value store named BlockDB based on Block Compaction and its optimizations. Then, we compare BlockDB with LevelDB, RocksDB, and L2SM using the YCSB benchmark. The results show that BlockDB can reduce write amplification up to 32% and running time by up to 43.6%, compared to its competitors. In addition, it can maintain the high performance for point lookups and range scans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
科目三应助舒适青槐采纳,获得10
2秒前
Orange应助HP采纳,获得10
2秒前
2秒前
科研通AI5应助lily采纳,获得30
3秒前
oldfe发布了新的文献求助10
4秒前
小金今天自律了吗完成签到,获得积分10
4秒前
Lucas应助真实的晓露采纳,获得10
4秒前
微笑的涛发布了新的文献求助20
4秒前
4秒前
CodeCraft应助野性的博涛采纳,获得10
5秒前
拒绝要说No完成签到 ,获得积分10
5秒前
虚幻的不愁完成签到,获得积分10
5秒前
5秒前
英俊的铭应助wwwww采纳,获得10
6秒前
6秒前
6秒前
纵马长歌完成签到,获得积分10
7秒前
Laus发布了新的文献求助10
7秒前
xuying158发布了新的文献求助10
7秒前
8秒前
搜集达人应助外Y采纳,获得10
9秒前
Herrily完成签到,获得积分10
9秒前
今天发CNS了嘛完成签到,获得积分10
9秒前
shuaishuyi完成签到,获得积分10
9秒前
老木虫发布了新的文献求助10
9秒前
10秒前
FashionBoy应助方硕采纳,获得10
10秒前
akkk626完成签到,获得积分10
10秒前
歡禧完成签到,获得积分20
11秒前
11秒前
阿卓西完成签到,获得积分10
12秒前
荒草瓦砾发布了新的文献求助10
13秒前
13秒前
莫三颜发布了新的文献求助10
14秒前
14秒前
15秒前
sheep发布了新的文献求助10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758569
求助须知:如何正确求助?哪些是违规求助? 3301517
关于积分的说明 10118751
捐赠科研通 3016035
什么是DOI,文献DOI怎么找? 1656396
邀请新用户注册赠送积分活动 790374
科研通“疑难数据库(出版商)”最低求助积分说明 753817