Fault diagnosis in industrial rotating equipment based on permutation entropy, signal processing and multi-output neuro-fuzzy classifier

计算机科学 故障检测与隔离 信号处理 状态监测 振动 人工智能 熵(时间箭头) 模糊逻辑 分类器(UML) 模式识别(心理学) 小波包分解 小波变换 小波 工程类 数字信号处理 执行机构 计算机硬件 物理 量子力学 电气工程
作者
Saeed Rajabi,Mehdi Saman Azari,Stefania Santini,Francesco Flammini
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:206: 117754-117754 被引量:82
标识
DOI:10.1016/j.eswa.2022.117754
摘要

Rotating equipment is considered as a key component in several industrial sectors. In fact, the continuous operation of many industrial machines such as sub-sea pumps and gas turbines relies on the correct performance of their rotating equipment. In order to reduce the probability of malfunctions in this equipment, condition monitoring, and fault diagnosis systems are essential. In this work, a novel approach is proposed to perform fault diagnosis in rotating equipment based on permutation entropy, signal processing, and artificial intelligence. To that aim, vibration signals are employed for an indication of bearing performance. In order to facilitate fault diagnosis, fault detection and isolation are performed in two separate steps. As first, once a vibration signal is received, the faulty state of the bearing is determined by permutation entropy. In case a faulty state is detected, the fault type is determined using an approach based on signal processing and artificial intelligence. Wavelet packet transform and envelope analysis of the vibration signals are utilized to extract the frequency components of the fault. The proposed approach allows for the automatic selection of a frequency band that includes the characteristic resonance frequency of the fault, which is subject to change in different operational conditions. The method works by extracting the proper features of the signals that are used to decide about the faulty bearing's condition by a multi-output adaptive neuro-fuzzy inference system classifier. The effectiveness of the approach is assessed by the Case Western Reserve University dataset: the analysis demonstrates the proposed method's capabilities in accurately diagnosing faults in rotating equipment as compared to existing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注鼠标完成签到,获得积分10
刚刚
刚刚
2秒前
陈有权发布了新的文献求助10
2秒前
Gigi完成签到,获得积分10
2秒前
2秒前
闪shan完成签到,获得积分20
2秒前
情怀应助bigxianyu采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
CINDY完成签到,获得积分10
3秒前
结实的保温杯完成签到,获得积分20
4秒前
鳗鱼灵雁发布了新的文献求助10
4秒前
4秒前
科研通AI5应助WNing采纳,获得10
4秒前
科研通AI5应助ZYP采纳,获得10
5秒前
安静碧灵完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
XW发布了新的文献求助10
7秒前
康zai完成签到,获得积分10
7秒前
hjx关闭了hjx文献求助
7秒前
科研通AI5应助负责的方盒采纳,获得10
7秒前
7秒前
安详的海风完成签到,获得积分10
7秒前
呆萌朝雪完成签到,获得积分20
8秒前
陈有权完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
daidai发布了新的文献求助10
9秒前
小猫宝发布了新的文献求助10
9秒前
oblivious完成签到,获得积分10
10秒前
HA123发布了新的文献求助10
10秒前
兴奋书雪完成签到,获得积分10
10秒前
无花果应助weiwei采纳,获得10
10秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809