DL-DRL: A double-level deep reinforcement learning approach for large-scale task scheduling of multi-UAV

强化学习 计算机科学 启发式 调度(生产过程) 人工智能 计算 利用 机器学习 分布式计算 数学优化 算法 数学 计算机安全 操作系统
作者
Xiao Mao,Guohua Wu,Mingfeng Fan
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2208.02447
摘要

Exploiting unmanned aerial vehicles (UAVs) to execute tasks is gaining growing popularity recently. To solve the underlying task scheduling problem, the deep reinforcement learning (DRL) based methods demonstrate notable advantage over the conventional heuristics as they rely less on hand-engineered rules. However, their decision space will become prohibitively huge as the problem scales up, thus deteriorating the computation efficiency. To alleviate this issue, we propose a double-level deep reinforcement learning (DL-DRL) approach based on a divide and conquer framework (DCF), where we decompose the task scheduling of multi-UAV into task allocation and route planning. Particularly, we design an encoder-decoder structured policy network in our upper-level DRL model to allocate the tasks to different UAVs, and we exploit another attention based policy network in our lower-level DRL model to construct the route for each UAV, with the objective to maximize the number of executed tasks given the maximum flight distance of the UAV. To effectively train the two models, we design an interactive training strategy (ITS), which includes pre-training, intensive training and alternate training. Experimental results show that our DL-DRL performs favorably against the learning-based and conventional baselines including the OR-Tools, in terms of solution quality and computation efficiency. We also verify the generalization performance of our approach by applying it to larger sizes of up to 1000 tasks. Moreover, we also show via an ablation study that our ITS can help achieve a balance between the performance and training efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
含蓄梦安完成签到,获得积分10
刚刚
su完成签到,获得积分20
刚刚
刚刚
zzy1020发布了新的文献求助10
刚刚
GGbond完成签到,获得积分10
1秒前
1秒前
3秒前
寒冷沛柔完成签到,获得积分10
4秒前
Doloris完成签到,获得积分10
4秒前
acanacan完成签到,获得积分10
4秒前
超级晓蓝完成签到,获得积分10
4秒前
anan驳回了华仔应助
4秒前
GG完成签到,获得积分10
4秒前
jellorio完成签到,获得积分10
5秒前
炒饭发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
肥肥发布了新的文献求助10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
DD应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
卡卡西应助科研通管家采纳,获得30
8秒前
smottom应助科研通管家采纳,获得10
8秒前
1351567822应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978478
求助须知:如何正确求助?哪些是违规求助? 3522465
关于积分的说明 11213660
捐赠科研通 3259954
什么是DOI,文献DOI怎么找? 1799695
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 806987