Deep Learning for Synthetic CT from Bone MRI in the Head and Neck

均方误差 医学 深度学习 核医学 人工智能 头颈部 磁共振成像 计算机科学 模式识别(心理学) 放射科 数学 外科 统计
作者
Sven Bambach,Mai‐Lan Ho
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:43 (8): 1172-1179 被引量:9
标识
DOI:10.3174/ajnr.a7588
摘要

BACKGROUND AND PURPOSE:

Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally suited for learning such mapping.

MATERIALS AND METHODS:

This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT examinations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 different encoder-decoder models: Light_U-Net (2 million parameters) and VGG-16 U-Net (29 million parameters) without and with transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics included Pearson R, mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizability by training and validating across different conditions.

RESULTS:

The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data captured only in a different environment but increased when local training data were augmented with those from different hospitals, vendors, or MR imaging techniques.

CONCLUSIONS:

We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This approach shows promise for facilitating downstream image processing and adoption into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eric完成签到,获得积分10
刚刚
刚刚
Keep完成签到,获得积分20
刚刚
坚定的诗双完成签到,获得积分10
刚刚
耍酷激光豆完成签到,获得积分10
刚刚
thousandlong完成签到,获得积分10
1秒前
充电宝应助Maestro_S采纳,获得10
1秒前
1秒前
1秒前
dusai完成签到,获得积分10
1秒前
棟仔超人发布了新的文献求助10
1秒前
1秒前
2秒前
派大星和海绵宝宝完成签到,获得积分10
2秒前
HYLynn完成签到,获得积分10
3秒前
赘婿应助芋泥螺蛳猫采纳,获得10
4秒前
renjiu完成签到,获得积分10
4秒前
4秒前
rrr完成签到,获得积分10
4秒前
JACK完成签到,获得积分10
5秒前
科研欣路完成签到,获得积分10
5秒前
勿庸完成签到,获得积分10
5秒前
5秒前
王乐多完成签到 ,获得积分10
5秒前
锅里有两条鱼完成签到 ,获得积分10
5秒前
6秒前
姚断天发布了新的文献求助10
6秒前
CBY发布了新的文献求助10
6秒前
庞洋发布了新的文献求助10
6秒前
6秒前
hetao286发布了新的文献求助10
7秒前
zzc完成签到 ,获得积分10
7秒前
蔺建薇完成签到,获得积分10
7秒前
whatever举报求助违规成功
7秒前
Hungrylunch举报求助违规成功
7秒前
幕帆举报求助违规成功
7秒前
7秒前
7秒前
lanjq兰坚强完成签到,获得积分10
7秒前
夏昼关注了科研通微信公众号
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740