Deep Learning for Synthetic CT from Bone MRI in the Head and Neck

均方误差 医学 深度学习 核医学 人工智能 头颈部 磁共振成像 计算机科学 模式识别(心理学) 放射科 数学 外科 统计
作者
Sven Bambach,Mai‐Lan Ho
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:43 (8): 1172-1179 被引量:9
标识
DOI:10.3174/ajnr.a7588
摘要

BACKGROUND AND PURPOSE:

Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally suited for learning such mapping.

MATERIALS AND METHODS:

This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT examinations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 different encoder-decoder models: Light_U-Net (2 million parameters) and VGG-16 U-Net (29 million parameters) without and with transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics included Pearson R, mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizability by training and validating across different conditions.

RESULTS:

The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data captured only in a different environment but increased when local training data were augmented with those from different hospitals, vendors, or MR imaging techniques.

CONCLUSIONS:

We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This approach shows promise for facilitating downstream image processing and adoption into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
共享精神应助蓝桉采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
曹国庆完成签到 ,获得积分10
1秒前
1秒前
科研通AI5应助小黑马采纳,获得10
1秒前
阡陌完成签到,获得积分10
2秒前
晓晖发布了新的文献求助20
2秒前
Nnnnnie完成签到,获得积分10
2秒前
3秒前
WJ完成签到 ,获得积分10
3秒前
QL发布了新的文献求助10
3秒前
4秒前
4秒前
zzz发布了新的文献求助10
5秒前
ddddd完成签到,获得积分10
5秒前
欢喜代桃发布了新的文献求助10
5秒前
6秒前
一辉完成签到,获得积分10
6秒前
7秒前
研友_Z3962L发布了新的文献求助10
7秒前
大个应助dimples采纳,获得10
8秒前
单薄初蝶完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
zc发布了新的文献求助10
10秒前
caixiayin发布了新的文献求助10
10秒前
Xiao完成签到,获得积分10
11秒前
12秒前
冰魂应助怡然万声采纳,获得10
12秒前
英俊的铭应助逍遥采纳,获得10
13秒前
Lucas应助跳跃的问玉采纳,获得10
13秒前
13秒前
Seiswan发布了新的文献求助10
13秒前
0ne222发布了新的文献求助10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774068
求助须知:如何正确求助?哪些是违规求助? 3319696
关于积分的说明 10196583
捐赠科研通 3034330
什么是DOI,文献DOI怎么找? 1664956
邀请新用户注册赠送积分活动 796461
科研通“疑难数据库(出版商)”最低求助积分说明 757475