Deep Learning for Synthetic CT from Bone MRI in the Head and Neck

均方误差 医学 深度学习 核医学 人工智能 头颈部 磁共振成像 计算机科学 模式识别(心理学) 放射科 数学 外科 统计
作者
Sven Bambach,Mai‐Lan Ho
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:43 (8): 1172-1179 被引量:9
标识
DOI:10.3174/ajnr.a7588
摘要

BACKGROUND AND PURPOSE:

Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally suited for learning such mapping.

MATERIALS AND METHODS:

This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT examinations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 different encoder-decoder models: Light_U-Net (2 million parameters) and VGG-16 U-Net (29 million parameters) without and with transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics included Pearson R, mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizability by training and validating across different conditions.

RESULTS:

The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data captured only in a different environment but increased when local training data were augmented with those from different hospitals, vendors, or MR imaging techniques.

CONCLUSIONS:

We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This approach shows promise for facilitating downstream image processing and adoption into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dild完成签到,获得积分10
刚刚
清枫发布了新的文献求助10
4秒前
李想完成签到,获得积分10
4秒前
彭于晏应助不喝牛奶的猫采纳,获得10
5秒前
5秒前
之星君完成签到,获得积分10
7秒前
9秒前
10秒前
浮游应助彪壮的雪晴采纳,获得10
11秒前
易晨曦完成签到 ,获得积分10
12秒前
12秒前
13秒前
打打应助endlessloop采纳,获得10
13秒前
无辜南晴发布了新的文献求助10
14秒前
15秒前
风息发布了新的文献求助10
16秒前
无情灯泡发布了新的文献求助10
16秒前
杜不腾发布了新的文献求助10
17秒前
念白发布了新的文献求助10
19秒前
科研通AI5应助jeesy采纳,获得10
21秒前
21秒前
21秒前
21秒前
谦让的博完成签到,获得积分10
21秒前
23秒前
APTACH完成签到,获得积分10
23秒前
23秒前
英吉利25发布了新的文献求助10
24秒前
25秒前
juphen2完成签到,获得积分10
28秒前
李健的小迷弟应助念白采纳,获得10
30秒前
爆米花应助大方研究生采纳,获得10
33秒前
酷波er应助清枫采纳,获得10
34秒前
36秒前
新月完成签到 ,获得积分10
36秒前
完美世界应助小冯采纳,获得10
36秒前
37秒前
杨怂怂完成签到 ,获得积分10
38秒前
云淡风清完成签到 ,获得积分10
38秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217962
求助须知:如何正确求助?哪些是违规求助? 4392247
关于积分的说明 13674920
捐赠科研通 4254581
什么是DOI,文献DOI怎么找? 2334523
邀请新用户注册赠送积分活动 1332187
关于科研通互助平台的介绍 1286219