Deep Learning for Synthetic CT from Bone MRI in the Head and Neck

均方误差 医学 深度学习 核医学 人工智能 头颈部 磁共振成像 计算机科学 模式识别(心理学) 放射科 数学 外科 统计
作者
Sven Bambach,Mai‐Lan Ho
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:43 (8): 1172-1179 被引量:9
标识
DOI:10.3174/ajnr.a7588
摘要

BACKGROUND AND PURPOSE:

Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally suited for learning such mapping.

MATERIALS AND METHODS:

This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT examinations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 different encoder-decoder models: Light_U-Net (2 million parameters) and VGG-16 U-Net (29 million parameters) without and with transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics included Pearson R, mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizability by training and validating across different conditions.

RESULTS:

The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data captured only in a different environment but increased when local training data were augmented with those from different hospitals, vendors, or MR imaging techniques.

CONCLUSIONS:

We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This approach shows promise for facilitating downstream image processing and adoption into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小熊发布了新的文献求助10
1秒前
伊伊发布了新的文献求助10
1秒前
Meredith完成签到,获得积分10
1秒前
qsh完成签到 ,获得积分10
2秒前
王小红发布了新的文献求助20
2秒前
虾仁炒饭发布了新的文献求助10
2秒前
3秒前
3秒前
江流儿完成签到 ,获得积分10
3秒前
3秒前
时间海完成签到 ,获得积分10
3秒前
liushikai完成签到,获得积分10
4秒前
奋斗的白昼完成签到,获得积分10
4秒前
4秒前
妮妮完成签到,获得积分10
5秒前
PAMPOO完成签到,获得积分10
5秒前
qing完成签到,获得积分10
7秒前
8秒前
JamesPei应助木土采纳,获得10
9秒前
VOLUNTINA完成签到,获得积分20
9秒前
科研通AI2S应助YuGe采纳,获得10
10秒前
桃大宝宝剑完成签到 ,获得积分10
10秒前
juanjuan发布了新的文献求助10
12秒前
温暖听安完成签到,获得积分10
12秒前
蓝水半杯完成签到,获得积分10
12秒前
13秒前
浅惜完成签到,获得积分10
13秒前
14秒前
所所应助Fisher采纳,获得10
14秒前
hhh发布了新的文献求助10
14秒前
14秒前
Owen应助jyszh1001采纳,获得10
14秒前
柒柒发布了新的文献求助30
15秒前
15秒前
科研通AI2S应助冷傲的白卉采纳,获得10
15秒前
gangxiaxuan完成签到,获得积分10
15秒前
小二郎应助shenlee采纳,获得10
15秒前
水水完成签到,获得积分10
16秒前
16秒前
顺利小鸭子完成签到 ,获得积分10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919