Deep Learning for Synthetic CT from Bone MRI in the Head and Neck

均方误差 医学 深度学习 核医学 人工智能 头颈部 磁共振成像 计算机科学 模式识别(心理学) 放射科 数学 外科 统计
作者
Sven Bambach,Mai‐Lan Ho
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:43 (8): 1172-1179 被引量:9
标识
DOI:10.3174/ajnr.a7588
摘要

BACKGROUND AND PURPOSE:

Bone MR imaging techniques enable visualization of cortical bone without the need for ionizing radiation. Automated conversion of bone MR imaging to synthetic CT is highly desirable for downstream image processing and eventual clinical adoption. Given the complex anatomy and pathology of the head and neck, deep learning models are ideally suited for learning such mapping.

MATERIALS AND METHODS:

This was a retrospective study of 39 pediatric and adult patients with bone MR imaging and CT examinations of the head and neck. For each patient, MR imaging and CT data sets were spatially coregistered using multiple-point affine transformation. Paired MR imaging and CT slices were generated for model training, using 4-fold cross-validation. We trained 3 different encoder-decoder models: Light_U-Net (2 million parameters) and VGG-16 U-Net (29 million parameters) without and with transfer learning. Loss functions included mean absolute error, mean squared error, and a weighted average. Performance metrics included Pearson R, mean absolute error, mean squared error, bone precision, and bone recall. We investigated model generalizability by training and validating across different conditions.

RESULTS:

The Light_U-Net architecture quantitatively outperformed VGG-16 models. Mean absolute error loss resulted in higher bone precision, while mean squared error yielded higher bone recall. Performance metrics decreased when using training data captured only in a different environment but increased when local training data were augmented with those from different hospitals, vendors, or MR imaging techniques.

CONCLUSIONS:

We have optimized a robust deep learning model for conversion of bone MR imaging to synthetic CT, which shows good performance and generalizability when trained on different hospitals, vendors, and MR imaging techniques. This approach shows promise for facilitating downstream image processing and adoption into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
SYLH应助xu采纳,获得10
4秒前
4秒前
5秒前
科研通AI2S应助小柚子采纳,获得10
6秒前
8秒前
小猪发布了新的文献求助10
9秒前
一缕清风发布了新的文献求助50
9秒前
Ming完成签到,获得积分10
9秒前
郑玉成发布了新的文献求助10
12秒前
Hello应助小猪采纳,获得10
14秒前
15秒前
chy完成签到,获得积分10
15秒前
15秒前
16秒前
按住心动发布了新的文献求助20
17秒前
咕噜快逃完成签到,获得积分10
17秒前
郑玉成完成签到,获得积分10
18秒前
18秒前
小张完成签到,获得积分10
19秒前
Miracle发布了新的文献求助10
20秒前
21秒前
21秒前
SYLH应助东郭水云采纳,获得10
22秒前
卖萌的秋田完成签到,获得积分10
23秒前
77发布了新的文献求助10
23秒前
23秒前
Alina1874发布了新的文献求助10
24秒前
万晓博发布了新的文献求助30
25秒前
26秒前
乐乐发布了新的文献求助10
27秒前
27秒前
30秒前
ding应助rong采纳,获得10
31秒前
31秒前
研友_VZG7GZ应助77采纳,获得10
32秒前
小南发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824